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Introduction

The aim of this chapter is to show how simple mathematical models of
the transmission of infectious agents within human communities can
help to aid the interpretation of observed epidemiological trends, to
guide the collection of data towards further underétanding, and to
help in the design of programmes for the control of infection and
disease. A central theme is to improve understanding of the interplay
between the variables that determine the typical course of infection
within an individual and the variables that control the pattern of
infection and disease within communities of people. This theme
hinges on an understanding of the basic similarities and differences
between different infections in terms of the number of population
variables (and consequent equations) needed for a sensible charac-
terization of the system, the typical relations between the various rate
parameters (such as birth, death, recovery, and transmission rates),
and the form of expression that captures the essence of the
transmission process. .

Model construction, whether mathematical, verbal, or diagram-
matic, is in principle the conceptual reduction of a complex biological
or population-based process into a more simple idealized and easily
understandable sequence of events. Consequently, the use of math-
ematical modelling as a descriptive and interpretative tool is a very
common exercise in scientific study. Its use, therefore, in epidemi-
ological study should not be viewed as intrinsically difficult or beyond
the comprehension of those trained in medical or biological disci-
plines. The reductionist approach, inherent in model construction;
which helps to define processes clearly and identify the most
important components of a system, is employed in many areas of
public health research and practice: The following situations, for
example, are all likely to involve, at the very least, the implicit use of
models to simplify and aid understanding: the assessment of the cause
and severity of sporadic epidemics of Salmonella or hepatitis A virus
food poisoning or Legionnaires’ disease; the cost-effectiveness analysis
of various measures used to combat an infection within a hospital,
within a community, countrywide, or globally; or the identification of
the factors that control the maintenance of an endemic infection
within a community.

Most epidemiological problems, by definition, are concerned with
the study of populations and so involve quantitative scores of, for
example, abundances and rates of spread. Thus it is invariably
necessary to convert any descriptive model of process into a more
formal mathematical framework so that we work with numbers and
not words. The use of a more formal structure enables us to

incorporate quantitative estimates of abundances or rates, derived
from experiment or field observations, into the model and to make
predictions of the likely behaviour of the system under varying
conditions, particularly when we are concerned with the introduction
or alteration of measures to control infection or disease. |

Itis the step of translation from verbal or diagrammatic description
into a formal mathematical framework that arouses the deepest
suspicions amongst medical or public health workers. Quite naturally
this response is in part a consequence of the use of, what is to many, a
strange symbolism to describe familiar verbal or conceptual identities.
It must be remembered, however, that mathematics is the most precise
language we have available for scientific study and once a probiem is
formulated in mathematical terms many techniques are available to
pursue the logical consequences of the stated assumptions. The clear
and unambiguous statement of assumptions is of course a particular
attribute of mathematical, as opposed to verbal, description. Excessive
use of symbolism or formal methods of analysis can confuse as
opposed to clarify and it must be admitted that some sections of the
mathematical epidemiological literature have drifted from their
original moorings and sail free from the constraints of data or
relevance. But to jump from this observation to the belief thar
mathematical models have nothing to contribute in practice to the
design of public health programmes is a mistake. Sensibly used,
mathematical models are no more and no less than tools for thinking
about things in a precise way.

The second area of suspicion, aside from symbolism, concerns
simplification. A frequent criticism of mathematical work in epidemi-
ology is that model formulation involves too many simplifying
assumptions despite kmown biological complexity. This is often true,
and needs to be remedied, but it is in part a consequence of the infancy
of the discipline and, in some cases, a result of inadequate quantitative
understanding of a particular problem. There are, however, two
important counter-arguments to the criticism of simplification.
Firstly and most importantly, it is often the case in biological study
that a few processes dominate the generation of observed pattern
despite the fact that many more can, to-a lesser degree, influence the
outcome. The identification of the dominant processes is an import-
ant facet of model construction and, what is termed, sensitivity
analysis. The second point concerns scientific method. The process of
understanding the consequences of a series of simple assumptions and
building upon this by slowly adding complexity is directly analogous
to the laboratory scientist’s approach of carefully controlling most
variables and allowing a few to vary in a planned design. Carefully
building complexity on a simple framework can greatly facilitate our
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understanding of the major factors that influence or control a
particular process or pattern. : . ’

The chapter is organized as follows. The second section following
this introduction provides a brief review of the historical development
of mathematical epidemiology and outlines the types of infection that
will be considered in latter sections. The third section addresses the
probiems of model construction, design, and application. The fourth
section examines the major concepts in quantitative epidemiology
that have been derived from mathematical study, such as threshold
host densities for the persistence of an infection, the basic repro-
ductive rate, and herd immunity. In the fifth section methods are
explored by which to obtain some of the basic epidemiological
parameters from empirical observation. The sixth section turns to
applied problems and considers the use of models in the design of
control strategies for infection and disease, and the final section is
reserved for concluding thoughts. Throughout, mathematical details
are kept to a bare minimum and the reader interested in technical
details of model construction and analysis is referred to papers in
specialist journals. '

Historical perspective

The application of mathematics to the study of infectious disease
appears to have been initiated by Daniel Bernoulli in 1760 when he
used a mathematical method to evaluate the effectiveness of the
techniques of variolation against smallpox (Bernoulli 1760). Further
interest did not occur until the middle of the nineteenth century when,
in 1840, William Farr effectively fitted a normal curve to smoothed
quarterly data on deaths from smallpox in England and Wales over the
period 1837 to 1839 (Farr 1840). This empirical approach was further
developed by John Brownlee (1906) who considered in detail the
‘geometry’ of epidemic curves. The origins of modern mathematical
epidemiology owe much to the work of Hamer, Ross, Soper, Kermack,
and McKendrick who, in different ways, began to formulate specific
theories about the transmission of infectious disease in simple but
precise mathematical statements and to investigate the properties of
the resulting models (Ross 1911; Kermack and McKendrick 1927;
Soper 1929). The work of Hamer (1906), Ross (1911), Soper (1929),
and Kermack and McKendrick (1927) led to one of the cornerstones of
modern mathematical epidemiology via the hypothesis that the course
of an epidemic depends on the rate of contact between susceptible and
infectious individuals. This led to the so-called ‘mass-action’ principle
in which the net rate of spread of infection is assumed to be
proportional to the density of susceptible people muitiplied by the
density of infectious individuals. In turn this principle generated the
celebrated threshold theory according to which the introduction of a
few infectious individuals into a community of susceptibles will not
give rise to an epidemic outbreak unless the density or number of
susceptibles is above a certain critical value (see the review by Fine
(1993)). )

Since these early beginnings the growth in the literature has been
very rapid and reviews have been published by Bailey (1975), Becker
(1979), Anderson and May (1985¢, 1991), Dietz (1987), and Scott and
Smith (1994). In more recent work there has been an emphasis on the
application of control theory to epidemic models (Wickwire 1977),
the study of the spatial spread of the disease (CHff et al. 1993), the
investigation of the mechanisms underlying recurrent epidemic

behaviour (Anderson and May 1982), the importance of heterogeneity
in transmission (Anderson and May 1985a), the formulation of
stochastic (probabilistic). models (Ball 1983), the formulation of
models for indirectly transmitted infections with complex lifecycles
(Anderson and May 1985b; Rogers 1988), the study of sexually
transmitted infections such as gonorrhoea and HIV (Hethcote and
Yorke 1984; Anderson ef al. 1986; May and Anderson 1987), and the
development of models for infectious agent transmission in develop-
ing countries with positive net human population growth rates

(Anderson et al 1988; Mclean and Anderson 1988a,b). Such

theoretical work is beginning to play a role in the formulation of
public heaith policy (Babad et al. 1995) and the design of control
programmes (Nokes and Anderson 1991) but there is a need in future
work for greater emphasis on data-oriented studies that link theory
with observation.

In the following sections we attempt to give a flavour of recent
work and to distil the major conclusions that have emerged in
particular areas. We have deliberately chosen to concentrate on
directly transmitted viral and bacterial infections that constitute the
major infectious diseases of children in developed countries and, as a
consequence of the recent pandemic of AIDS, sexually transmitted
infections. Our reasons are simply that the mathematical models are
more highly developed in these fields by comparison with others (e.g.
vector-borne infections), that theory has close contact with empirical
epidemiological data in these areas, and that model structure is
somewhat simpler than for other infections such as metazoan
parasites.

Model construction

Definition of terms

Epidemiology

Epidemiology as a subject is concerned with the study of the
‘behaviour’ of an infection or disease within a population or
populations of hosts (= humans). ‘Behaviour’ refers to observed
patterns such as the incidence (the rate at which new cases arise or are
reported) of infection or disease. Examples of ‘behaviour’ are
epidemics (a rise and subsequent fall in incidence) and endemicity
(the stable maintenance of infection within the human community).
The aim of the discipline is to determine the underlying processes and’
understand the interactions between them, that generate observed
patterns (e.g. the rate of spread of infection and the pattern of
susceptibility to infection). Epidemiology is a quantitative discipline
that draws on statistical techniques for parameter estimation and
mathematical methods for delineating the dynamic changes that occur
through time, across age classes, or over different spatial locations. The
discipline also makes use of modern molecular (e.g. DNA probes and
polymerase chain reaction) and immunological (measures of the
abundances of antibodies specific to an infectious agent’s antigens)
techniques for the detection and quantification of current and past
infection or disease.

Populations

The definition and description of the host and parasite populations is
of obvious importance in epidemiological studies. A population is ai
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assemblage of organisms of the same species (or genetic type etc.)
which occupy a defined point or points in the plane created by the
dimensions of space and time. The basic unit of such populations is
the individual organism (i.e. parasite or human host). Populations

may be divided (= stratified) into a series of categories or classes, the"

members of which possess a unifying character or characters such as

age, sex, or their stage of development. Such subdivisions may be’

made on spatial or temporal criteria to distinguish a local population
from a larger assemblage. The boundaries in space, time, and genetic
constitution between different populations are often vague, but it is
important to define what constitutes the ‘study population’ as clearly
as possible.

The natural history of infection

Mathematical madels are often used to depict the rate of spread or
transmission of an infectious agent through a defined human
community. For their formulation three broad classes of mformatJon
are required.

1. The modes and rate's of transmission of the agent.

2. The typical course of events within an individual following
infection.

x

3. The demographic. ,and social characteristics of the human
community.

The mode of transmission (i.e. direct, indirect, horizontal, vertical,
etc.) is of obvious importance (Table 1), but if there is more than one
route the relative efficiency of each in determining overall trans-
mission must be understood. When considering microparasitic
infections (e.g. viruses, bacteria, and protozoa that multiply directly
within the host) it is generally not possible to measure the pathogen
abundance within the host (i.e. the burden or intensity of infection).
However, following invasion it is important to obtain quantitative
information on the typical durations of the latent and infectious
periods of the infection and the incubation period of the disease it
induces. As depicted in Fig. 1, the latent period is defined as the
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Fig. 1 Schematic representation of the typical time-course of an acite viral
or bacterial infection in a host individuat and the corresponding progression
through infection classes (note the different time durations within each of
these classes). (Source: Nokes and Anderson 1988.)

average period-of time from the point of infection to the point when an
individual becomes infectious to others, the infectious period denotes
the average period over which an infected person is infectious to
others, and the incubation period defines the average period from
infection to the appearance of symptoms of disease. In practice all
these periods are variable between individuals, depending on factors
such as the size of the inoculum of the infectious agent that initiates
infection, the genetic background of host and parasite, past experience
of infections, and the nutritional status of the host. The use of an
average is an economy of thought and where knowledge permits
models should be based on distributed latent and infectious periods.
In some instances the infectious period may be influenced by patient
management practices such as the confinement of an infected person
once symptoms of infection are diagnosed (e.g. measles and
tuberculosxs)

There are instances in the case of viral and bacterial infections when
a knowledge of pathogen abundance within blood, excretions,
secretions, and other tissues or organs of the host can be of importance
in determining the infectivity of an infected person to susceptible
contacts. A good example is provided by HIV-1. Current evidence
suggests that the infectiousness of an infected person varies greatly
over the long and variable incubation period of the disease AIDS that
the virus induces (Fig. 2). It is believed on the basis of recorded
fluctuations in HIV antigenaemia that a short period of high
infectiousness occurs shortly after infection, followed by along period
of low to negligible infectiousness (perhaps many years) before
infectiousness again increases as the infected patient develops symp-
toms of AIDS (Anderson and May 1988). In these cases rather
complex models are required to mirror the natural history of infection
(Anderson 1988).

The human immune response to infection, its ability to confer
protection against reinfection, and the duration of this protection
have important implications for model construction. For the majority
of childhood viral infections the assumption of liflong immunity
following recovery appears to be correct. However, as one moves up a
scale of parasite structural (antigenic) complexity from viruses to
bacteria to protozoa in general the duration of acquired immunity
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Fig. 2 Possible changes in HIV-1 concentration in the blood of an infected
individual (antigenaemia) and in the associated degree of infectiousness
during the tong incubation period of AIDS @
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Table 1 Epidemiological classification of infectious diseases of public health importance in developed countries

Mode of transmission

Type of parasite

Examples (diseases or agents)

Micro®
Viruses Rubella, hepatitis B, cytomegalovirus, retroviruses
Protozoa Taxoplasma gondii
HORIZONTAL
Direct
Close contact Micro
Viruses Measles, mumps, rubella, Epstein—Barr virus, herpes simplex-1, respiratory
syncytial virus, influenza-2, varicella, common cold
Bacteria Diphtheria, pertussis, bacterial meningitis
Macro®
Nematodes Enterobius vermicularis (pinworm)
Environmental Micro
Viruses Hepatitis A, polio, Coxsackie
Bacteria Tetanus, Shigella, Salmonella, typhoid, cholera, Legionnaires’ disease
Protozoa Giardia intestinalis, amoebiasis
Macro
Nematodes Pinworm
Sexual Micro
Viruses . Hepatitis B, HIV, herpes simplex-2, cytomegalovirus
Bacteria Neisseria gonorrhoeae, syphilis
Protozoa Trichomonas vaginalis
Not direct
Via other host species Micro
(zoonoses) Virus Rabies
Protozoa Toxoplasma gondii
Macro
Nematodes Toxocara species
Cestodes Taenia solium, T. saginata, Echinococcus granulosus (hydatid)
Vector-borne® Micro
Viruses Hepatitis B, HIV, Venezuelan equine encephalitis
Bacteria Yersinia species (plague)
Protozoa Plasmodium species (malaria)

4nclusive of transplacental and perinatat infection.

®Microparasites are those that multiply directly within the host individual, usually resulting in acute infections and subsequent durable immunity to reinfection.

“Macroparasites are larger parasites whose reproductive stages pass out of the host. Infection intensity is thus a process of accumulation, and can be measured as worm burden.

dNeedie transmission is included.

decreases. For certain infections, such as gonorrhoea, acquired
immunity is absent while for many protozoan infections it is of short
duration (e.g. Plasmodium sp.). The inability to devélop effective
immunity is often related to the genetic diversity of the infectious
agent population (antigenic diversity) such that infection with one
genetic strain fails to protect against invasions by another (e.g.
Neisseria gonorrhoea, Neisseria meningitidis, and influenza viruses).
The question of immunity can be complicated by a degree of
cross-immunity (non-specific in character) resulting from infection
by dissimilar organisms (e.g. many bacterial infections of the
respiratory tract).

Demographic and behavioural characteristics of the human corn-
munity are usually important in the study of transmission dynamics.
For infections that confer lifelong immunity on host recovery the rate
of input by births of new susceptibles will influence the overall pattern
of infection in a community. Similarly, the rate of transmission of
‘close contact’ infections (Table 1) will depend upon the degree of
mixing between individuals and the density and age distribution of
susceptibles and those infected. Heterogeneity in behaviour within 2
community is of particular importance in the study of sexually
transmitted infections since rates of sexual partner change vary greatly
between individuals (Johnson et al. 1992, 1994). More generally,
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heterogeneity in any behaviour, whether sexual or social mixing, must
be captured in model formulation.

It will be clear from the preceding comments that much quantitat-
ive detail about the natural history of infection must be understood for
accurate model formulation. In many instances such detail is not
available, but model formulation can greatly facilitate our khowlédge
of what needs to be understood to define the transmission dynamics of
a given infection. With respect to many childhood viral and bacterial
infections, such as measles, rubella, mumps, pertussis, and diphtheria,
a great deal is understood about the natural history and, hence, much
of the work on mathematical models has focused on those infections.
Their direct route of transmission, their tendency to induce lifelong
immunity, plus, in most cases, the availability of serological ‘or
virological techniques to detect past or current infection facilitates the
acquisition of quantitative data. '

Units of measurement

The unit of measurement employed in epidemiological study depends
on the type of infection. The most basic unit is that of the individual
parasite. As already discussed, in most cases this unit is not a
practicable option for microparasitic organisms due to difficulties in
detection and quantification (however, advances in molecular biology

and biochemistry are generating new techniques which may be of
value in the near future). As such, the most useful unit is that of the
infected host which allows the human community to be stratified on
the basis of whether individuals are susceptible, infected but not yet
infectious (= latent or pre-patent), infectious, and recovered
(= immune in ‘the case of many viral infections). Infection may be
detected dxrectly (e.g. DNA probes, virus, or bacterial culture) or
indireetly by the presence of antibodies specific to pathogen antigens
(serological and salivary tests). Seropositivity does not necessarily
discriminate between infected and recovered individuals, but for
many viral and bacterial infections serological surveys of a population,
perhaps stratified by age, sex, and other variables carried out
longitudinally (through time via cohort monitoring) or horizontally
(across age classes) provide a key measure of transmission and the
broad epidemiological characteristics of the infection.

What models describe

At any point in time a population may be classified by the density or
number of susceptible, infected, and immune individuals. With the
passing of time and concomitantly as individuals age, people may
move from one infection class to the next. As such, with the
recruitment of new susceptibles by birth and, in some cases, the loss of
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Fig. 3 Flow diagrams used to describe the movement of individuals within poputations compartmentalized according to infection stmtus to particular parasitic
agents. (a) Simple model for infections inducing lasting immunity (e.g. measles, mumps, rubella, yellow fever, and poliomyelitis) or (b) in which immunity is
transient and individuals subsequently return to the susceptible pool (e.g. Neisseria gonorrhoea, typhoid, cholera, Trichomonas vaginalis). {c) Many infections

persist within the host for long periods of time, during which the infected individual may remain infectious (1), as is the case for carriers of hepatitis B virus,
gonorrhoea, Salmonella typhi, and Treponema pallidum (syphilis), chronic tuberculosis patients, or during recrudescence of herpes viruses and malaria. The
epidemiological importance of this characteristic is that it enables the perpetuation of such infections in low density communities (see discussion of the mass-
action principle in the text). For other infections immunity is defence against disease but not asymptomatic reinfection (2) from which new infectious individuals
arise {e.g. Haemophilis influenzae and Neisseria meningitidis). (d) Vaccination (3) has the effect of transferring individuals directly from the susceptible to the '
immune class. (¢) Mare detailed description of the transmission dynamics of an acute microparasitic infection which explicity accounts for births and deaths in
the population. All necnates are born possessing maternally derived protective antibody. The net birth rate is assumed to equal the sum of the net death rates
for each subpopulation (compartment), that is, births = IN, where N = M + X + H + Y + Z = constant population size. The per capita rates defining movement
between infection classes are described in the text.
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immunity, the population structure is a dynamic process with
individuals flowing from one class to the next. Mathematical models
of transmission attempt to capture the dynmamic nature of these
changes in the form of difference (discrete time steps) or differential
(continuous time) equations (Scott and Smith (1994) give a simple
introduction). With respect to microparasitic infections where the
population is stratified or compartmentalized by infection status, the
resulting models are often referred to as compartmental models. The
types and numbers of compartments will depend upon the type of
infectious agent and the details of its natural or life history. A number
of examples are recorded in Fig. 3 in the form of flow diagrams. These
diagrams form a useful intermediary step between biological compre-
hension and mathematical formulation. '

Population rates of flow

Following the introduction of an infection into a stable population the
pumber or density of individuals within the various infection
compartments will depend on the rates of flow between compart-
ments such as infection and recovery rates. The size of a population in
a specific compartment will depend on the magnitude of those rates
that determine the entry and duration of stay. In general, the shorter
the duration of stay (the higher the rate of leaving) in a particular
compartment the smaller the size of the population in that category
(the inverse relationship between ‘standing crop’ and ‘rate of
turnover’). If the infection attains a stable endernic equilibrium in the
human community, the net input into each compai‘tment will exactly
balance the net output. The relative numbers in each compartment
will be directly related to the duration of stay. Thus, for example, in the

case of endemic measles in a developed country where immunity is.

lifelong (many decades), individuals remain in the susceptible class for
an average of 4 to 5 years and in the latent and infectious classes for a
few days (say 7 days on average in each). As such, most people are in
the immune dass, followed by the susceptible class, and few
individuals at any point in time are-in the latent and infectious classes.
Figure 4 provides a diagrammatic representation of this point.

A formal demonstration of the influence of rates of flow (or
durations of stay) on the proportion of susceptibles, those infected,
and immunes in a population is made possible by the transtation of the
flow diagram of movement between compartments (Fig. 3) into a set
of coupled differential equations. Typically, these describe the rates of
change with respect to time (or age or both) of the densities of infants
with ‘maternally derived immunity (due to maternal antibodies),
susceptibles, infecteds not yet infectious, infectious individuals, and
immunes, denoted respectively by M(z), X(z), H(¢), Y(¢), and Z(1) at
time ¢ (Fig. 3(e)). In writing down these equations we need to define
the rates of flow between compartments by a series of symbols. For
example, in common notation & (delta) defines the loss of maternally
derived immunity, i.e. the average per person rate of loss of passive
protection. The absolute rate of loss from or movement out of class M
(Fig. 3) requires that the per capita rate (i.e. person/unit of time) be
multiplied by the size of the M subpopulation, that is 3M (which has
units of persons/unit of time). If  is the per capita rate of movement
out of class M then the average duration -of maternally derived
immunity is 1/8. These principles apply to the other rate terms shown
in Fig. 3(e). Hence, using conventional symbols, B (beta) is the
transmission coefficient that defines the probability of contact and
infection transfer between a susceptible and infectious person, &
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Fig. 4 The proportions of a population who are in the susceptible, infected
{either latent or infectious), and immune classes for a typical childhood viral
infection. In this example, which is based on measies, the force of infection,
A = 0.2 per year (corresponding to an average age at infection of 5 years)
and the rate of movement from the latent class, 6, and recovery from
infectiousness, 7, is 52 per year (corresponding to an average duration of
stay in each of these infected classes of 1 week). Note that the proportion
of the population in the infected classes is always much less than that in the
susceptible or the immune classes (Fig. 1). ‘

(sigma) defines the pér capita rate of leaving the latent class (average
latent period 1/G), v (gamma) the per capita rate of leaving the
infectious class (average infectious period 1/v), and p (mu) the natural
per capita mortality rate (1/pt is average life expectancy). For
developed countries it is commonly assumed that population size is
approximately constant such that net births exactly balance net deaths.
Therefore the net death rate, pN (where N is the total population size
M+ X+ H+ Y + Z) is equated by births (hence the term mN for births
in Fig. 3(e)). Additionally, it is assumed that infection does not induce
an extra case mortality rate over and above natural mortality. With
this notation we can define the equations for M, X, H, Y, and Z as

dM/dt = pN - (8 + WM (1)
dX/dt = 8M ~ (BY + W)X @
dH/de BXY - (6 + 0 H- (3)
dY/dt = cH-(y + W)Y _ 4)
dZ/dt= vy - uz. ‘ (3)

In these equations, which constitute a simple model of infection
transmission, do/dt simply refers to the rate of change of the number
or density of individuals in a class (M, X, H, Y, or Z) with respect 10
(over) time. The right-hand side of each of these equations then
expresses precisely what the rate of change is. For a simple introduc-
tion to the definition, manipulation, and interpretation of such
differential equations in the epidemiological context, the reader i
referred to Scott and Smith (1994). The major assumptions incorpor-
ated in the above equations are that the net rate of infection BXY is
proportional to the density of susceptibles multiplied by the density of
infectious- individuals, that individuals leave each compartment at 2
constant per capita rate (other than for the susceptible class, X, (see
below)) because it is assumed that the per person rates 3, i, G, and Y,
do not change over time, and that net births exactly balance net deaths
(reasonably accurate for developed countries). To explore what
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these assumptions imply in terms of the dynamics of transmission and
the numbers or proportions of individuals in each class we need to

solve these equations either analytically to obtain explicitly

expressions for M(#), X(1), H(2), Y(2), and Z(¥) in terms of the rate
parameters and the variable time () or numerically to generate
projections of changes in the numbers in each compartment through
time (Scott and Smith 1994). In the case of simple models we can often
obtain exact analytical solutions as is the case for the equation for M(#)
in the model defined by egns (1) to (5). The solution gives us the
number of infants with maternally derived protection at time £, M(#):

M) = (N (1 + B)[1 - ™ * 9]} + M(0)e™ ~ Bt 6)

where M(0) is the number protected at time ¢ = 0.

More generally, the complexity of the life histories of many
infections makes analytical solution difficult or impossible and
numerical methods are required. Modern computers make light work
of very complex systems of equations describing disease transmission
and many software packages are available for the solution of sets of
differential equations and now for model making. Nevertheless, in
these cases some general analytical insights can be obtained by
examining the equilibrium properties.of the model which is done by
setting the time derivatives (i.e. the d/d¢) equal to zero, that is such that
there are assumed to bé no further changes in the number of
individuals within each mfectxon class because the flows into and out
of any one category are equal. These equations can then be solved to
determine the numbérs at equilibrium (i.e. at stable endemicity) in
each class (referred to as M*, X*, H*, Y*, and Z*). For example, in the
simple model of eqns (1) to (5) by simple algebralc manipulation we
obtain »

Mt = uN/(S + ) (7

X*=(c+uw(y+wiBo (8)

= (Y + WY/o (9)
T = (3M* — puxX*)/BX* " (10)
Zr =4t (11)

where N is the constant representing the total population size. These
equilibrium solutions illustrate how the various rate parameters that
determine flow between ‘compartments influence the numbers of
individuals in each compartment when the infection is at an endemic
steady state. For example, based upon the assumptions in our model
for an acute childhood infection (egns (1)—(5)), we can suggest that at
endemic equilibrium the number or density of individuals in the
maternal antibody class, M*, is directly dependent upon the net rate of
births (where births equal deaths, uN) and inversely related to the rate
of loss from the class (3 + 1) (where 1/(3 + ) is the average duration
in the maternal antibody protected class).

Parameter estimation

The preceding section provided a clear illustration of the numerous
Parameters that are necessary to define even the simplest model of
direct transmission within a human community. To make the best use
of a model it is desirable to have available estimates for each of the
parameters for a given infection. Some, such as the demographic rates
of birth and mortality and total population size, can be easily obtained
via national census databases (usually finely stratified by age and sex in
developed countries). Others, such as the average latent and infectious
periods, must be determined either by clinical studies of the course of

infection in individual patients (e.g. measures of change in viral
abundance during the course.of infection) or by detailed household
studies of case-to-case transmission, Statistical methodology plays an
important role in this instance since; as noted earlier, latent,
infectious, and incubation periods are rarely constant from one
individual to the next. Statistical estimation procedures have been
developed to help derive summary statistics of these distributions (e.g.
means and -variances) (Bailey 1975).

Invariably, the most difficult parameter to estimate is the trans-
mission coefficient B (see eqn (2)), which is 2 measure of the rate of
contact between members of a population plus the likelihood of
infection resulting from contact. In some cases, such as certain
sexually transmitted infections (e.g. gonorrhoea), direct estimates can
be obtained via contact tracing methods (Hethcote and Yorke 1984).
More commonly, indirect methods must be employed, often them-
selves based on model formulation and analysis. A simple example
employs the model defined in the previous section by eqns (1) to (5).
We can define the component BY of the transmission term as the per
capita rate at which susceptibles (X) acquire infection. This rate is
commonly referred to as the ‘force of infection” and denoted by the
symbol A (lambda). Analysis of the model reveals that the average age
at which an individual typically acquires infection, 4, is approximately
related to the force of infection by the expression

A=1/A. | (12)

Hence if we can estimate A from an age-stratified serological profile
or from age-defined case-notification records (Box 1) we can, via eqn
(12), estimate A. More generally, this rate often varies with age and
more complex methods of estimation must be employed given good
age-stratified serological data (see Grenfell and Anderson 1985). Put
in simple terms, if the proportion susceptible at age a + 1is x(a + 1)
then the force of infection over the age interval 2 —a + 1 (defined per
unit of age) is simply

A = —In[x(a + 1)/x(a)]. (13)

With serological data finely stratified by age, under the assumption
that the infection confers lifelong immunity upon recovery, eqn (13)
can be used to estimate how A changes with age in a given community.
For most childhood viral and bacterial infections A is 2 function of age,
changing from low values in infant classes to high in child to young
teenage classes back to low in adult age classes (Fig. 5). This is thought
to reflect patterns of intimate contact via attendance at school and play
activities.

Purther complications may arise if rates of contact or transmission
vary through time, perhaps due to seasonal factors such as the
aggregation and dispersal of children at term and school holiday
periods (Yorke etal 1979; Anderson 1982; Bolker and Grenfell 1993).
The problems of parameter estimation are considered in more detail
in a later section. -

Concepts in quantitative epidemiology

The incidence of infection and disease

Transmission by direct contact and the law of mass action

When close contact between infectious and susceptible individuals is
necessary for transmission, the number of new cases in a population
which arise in a unit of time (i.e. incidence of infection) is often
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Box 1 Surveillance profiles
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Fig. 5 Examples of the age-dependent nature of the per susceptible rate of transmission for common childhood viral and bacterial infections. Graphs (a) and
(b) derive from horizontal cross-sectional serological surveys in the United Kingdom, of rubeila (Nokes et al 1986) and mumps (Anderson et dl. 1987)
respectively. Graphs (c) and (d) provide estimates based on case-notification data for England and Wales for whooping cough (Anderson and May 1985b) and

measles (Grenfell and Anderson 1985) respectively.

assumed to be approximately given by the density (or number) of
susceptibles, X, multiplied by the density (or number) of infectious
persons, Y, multiplied by the probability of an effective (infectious)
contact between an infectious person anid a susceptible, B (i.e. BXY).
This relationship is commonly referred to as the ‘law of mass action’
by analogy with particles colliding within an ideal gas system (Box 2).
The basic assumption implicit in this concept is that the population
mixes in a random manner (often referred to as homogeneous
mixing). The term BXY which describes net transmission is the major
non-linear expression in most compartmental models of directly
transmitted viral and bacterial infections. It is, of course, a crude
approximation of what actually occurs in human communities and
more realistic refinements of this assumption are discussed in later
sections. However, it provides a convenient point of departure for
model construction and analysis.

The transmission coefficient

The probability of transmission, B, is made up of two components,
namely the rate at which contacts occur between susceptible and
infectious persons and the likelihood that transmission will result
from a contact. Consequently B is dependent on sociological and
behavioural factors within the host population (i.e. rate of mixing)
and the biological properties that determine the infectiousness of an
infected person and the susceptibility of an uninfected individual.

These biological properties involve factors such as the virulence of the
infectious agent and the genetic background plus the nutritional status
of the human host.

Incidence estimates

The incidence of infection, 1, can be measured by direct observation of
new cases, such as notifications of measles or pertussis. Unfortunately,
however, measures of incidence tell us nothing about the respective
densities of susceptibles or infectious people, nor the magnitude of the
transmission coefficient B. It is common practice in epidemiology for I
to be expressed as the number of cases per unit of population (usually
100 000 people in a defined class, such as age or sex) over a defined
period of time such as 1 year (e.g 5/100 000 per annum). Such
measures are often referred to as attack rates (AR). However, theyarea
rfather poor measure of the intensity of transmission within a
population since they take no account of the proportion of the
community (or age or sex class) that is susceptible to infection (Box 3).
A better measure of the rate at which susceptibles acquire infection is
provided by a parameter termed ‘the force of infection” commonly
denoted by the symbol A. It simply defines the probability that a
susceptible individual will acquire infection over a short period of time
(i.e. a per susceptible (= per capita) rate of infection) and, in the
terminology of the mass-action principle, is defined as A = §Y. Here
might be thought of as the force of infection for one infectious person
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Box 2 The law of mass action and the incidence of infection

imagine susceptible-and infectious individuals behaving as ideal gas”
-particles wi'lihin.a‘c;loéedts‘ys'temawithznoim‘migmtim,cra‘r.nigr'aﬁoﬁ;andz ’

“accuipying & défined space, whers X is the number of particles of one -
e mimber of patticles'of asecondigas (ie.

gasi(ie. susceptibles), Y
infectious peapie), and Bisthe collision coefficient for the formation.of

“motecules of anew-gas from:orie molecule each of the original gases.

. (i new: cases.of infiection) (figure-(a)).

(a)

Gas partictes (individuals) are mixing in 2 homogeneous maner such
that collisions (contacts) aetyr at random. The law. of mass action
states-that the net rate of production of new molecules {i.e. cases), , is
simply "~ - i o - S . :
= gXv. )
The coefficient |B.is a measure of (). the rate.at which collisions
(contacts) accur and (i) the probability that the repelient forces of the
‘gas particles can be overcome to produce new molecules, or; in the
-case of infection, the likeihood that a contact hetween a susceptible
and an infectious persan results in the transmission of infection, Under
these assumptions, the incidence of infection.will be increased by
larger numbers (or densities) of infectious and susceptible persons
and/or high probabilities (B) of transmission (figure (b)).

in a community. Estimates of this rate A can be derived from
age-stratified serological profiles or case notifications (Anderson and
May 1983, 1991; Grenfell and Anderson 1985) (Fig. 5).

Yalidity of the mass-action principle

Despite the simplicity of the notion of homogeneous mixing implicit
in the mass-action principle of transmission, the predictions of simple
compartmental models based on this assumption often mirror
observed epidemiological patterns surprisingly well (Anderson and
May 1982). In part, this is a consequence of increased travel,
movement, and mixing within many societies in developed countries..
Measles epidemics, for example, are often synchronous in England
and Wales, with a clear distinction in all parts of these regions between
years of high incidence and years of low incidence (Fig. 6). However,
the less able an infection is to spread through a particular population
(lower Ry, see below) then the more important are slight deviations
from homogeneous mixing, resulting in a lower degree of synchrony
of epidemics in a country (Fig. 7). The assumption is most appropriate
for infections which are spread by close contact between individuals
such as respiratory infections transmitted by contaminated droplets
and nasopharyngeal secretions. In such cases, the survival of the
infectious agent in the external environment is of very short duration

Increase-X ar 1sef.

Larger /

{b)

(i.e. minutes), As such, there is no significant reservoir of infectious
stages to maintain transmission in the absence of infectious persons.

Many kinds of heterogeneities can invalidate the mass-action
principle and much attention in recent years has been devoted to their
inclusion in compartmental models. The major sources are hetero-
geneities arising from age-related factors, that determine contact and
mixing patterns (i.e. ‘who mixes with whom’) and spatial factors sach
as differences in population densities in urban and rural areas of 2
country (Anderson and May 1984, 1991; May and Anderson 1984).
Such sources of heterogeneity are very important in the design of
control policies based, for example, on mass vaccination and models
have been developed to assess their impact.

Heterogeneity in behaviour is of particular importance in the study
of sexually transmitted infections such as gonorrhoea and HIV. Oneof
the major determinants of the rate of spread of such infections is the
distribution of the rate of sexual-partner change within 2 defined
community (Fig. 8). These distributions are typically highly heterc”
geneous in character (i.e. the variance in the rate of partner change 8
much greater in value than the mean rate of partner change) where
most people have few different sexual partners in a lifetime (or °_"er 2
defined period of time) and a few have very many. The activities °
individuals in the ‘il of the distribution (the highly sexually active)




Box 3 Interpreting attack rates

Care should be exercised when interpreting attaci rates. ;g;th_e'
* . absence of information ort the proportion of individua within the
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- population: who. are immune. as a result of previous. mfect!on.

.. (assuming we are considering am infection such.as measles that.
_induces lasting. immunity -on. recovery). A simple. tllustr'atwe:

i example is.given below based on case notification for. measles.:

Attack rate Percentage

Modified’ 7

Age
(years) per immune attack rate:’
head of in the age based.om: "
poputation class infection. per
in that age- head of the:
class susceptible .
population:’:
7 180/100°000° 10
10 20/100000 90

iAt a first glance at column 2, the attack rate suggests that infarits
“aged? years have amuch greaterchance of acquiring infection than
‘¢hildren aged 10 years, However, ifwe adjust the denominator cf
: efattack rate frém per head of populatiorin that age classto. per.
: head of suscept\ble popu(atlon in the age“class, we see from the
’_?fourth column that the.rate of mfectlcn is ‘dem:rcal i both age
‘classes.

are clearly important for the persistence and spread of infection since
those with many partners are both more likely to acquire infection and
more likely to transmit it to others.

Simple theory based on compartmental models of the transmission
of infections such as gonorrhoea and HIV assumes that the net rate at
which infection is spread in, for example, a male homosexual
community is determined by the proportion of infectious persons
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Fig. 6 The number of cases of measies reported each week in England and
Wales between 1948 and 1968. (Source: Office of Population Census and
Surveys, London.)
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Fig. 7 Annual rubeila case notifications reported by four city health
authorities in England: Leeds (#), Bristol (M), Manchester (4), and
Newcastle (). The dominant interepidemic period is roughly 4 to 5 years
with peak incidence often slightly out of phase between cities (compare with
Fig. 6). (Source: Communicable Disease Surveillance Centre, London.)

(Y/N where N is the total size of the sexually active population)
multiplied by the density of susceptibles (X) multiplied by a
transmission coefficient B. This coefficient is defined as the probability
that a sexual contact (per partner) results in transmission, B,
multiplied by the effective rate of sexual-partner change, ¢ (which
determines contacts). If the population mixed homogeneously, this
effective rate would simply be the mean rate of sexual-partner change,
m. When great heterogeneity in rates of partner change is present
within a population the effective rate must be defined in terms of this
variability as well as the mean rate of activity. If we assume that the
population is divided into classes with different rates of partner change
and that partners are chosen (from any dass) in proportion to their
representation in the population multiplied by the rate of partner
change in each group (an assumption of ‘proportional mixing’
(Anderson et al. 1986; May and Anderson 1987; Garnett et al. 1992;
Gupta and Anderson 1992)), then the effective rate of partner change,
¢, is given by

c=m+ ($/m) (14)

where m is the mean rate of partner change and s is the variance in the
rate. The importance of variability in contact is clear from this simple
equation. For example, suppose the mean rate per year is unity but the
variance is five times greater. If we assumed that homogeneous mixing
occurred our estimate of the effective rate would be 1, but if we take
account of heterogeneity the effective rate is six times as large. The
influence of the small proportion of highly sexually active individuals
on the overall transmission rate is very significant.

Transmission thresholds and the basic
reproductive rate of infection

The basic reproductive rate of infection R,

A key measure of the transmissibility of an infectious agent is provided
by a parameter termed the basic reproductive rate {or, also in the
literature, basic reproduction number or ratio) and denoted by the
symbol R,. It measures the average number of secondary cases of
infection generated by one primary case in a susceptible population.
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Fig. 8 Variation in the numbers of different sexual partners per year revealed from surveys of the male
homosexual and the heterosexual communities in the United Kingdom, 1986 (Anderson 1988). The
skewed distribution observed in each instance (an indication that although the majority of individuals have
few partners, a few have very many), and the mean rate of sexual-partner change (indicated), are both of
significance to the perpetuation and rate of spread of sexually transmitted diseases in the community.

Its value is defined by the number of susceptibles present with which
the primary case can come into contact (X) multiplied by the length of
time the primary case is infectious to others, D, multiplied by the
transmission coefficient, B (rate of effective mixing):
R, = BXD. : (15)
Note that R, is a dimensionless quantity (i.e. the units of measurement
cancel out) that defines the potential to produce secondary cases (in a
totally susceptible population) per generation time (ie. the average
duration of the infection).

The basic reproductive rate is of major epidemiological signifi-
cance since the condition R, = 1 defines a transmission threshold
below which the generation of secondary cases is insufficient to
maintain the infection within the human community. For values
above unity the infection will trigger an epidemic and, with a
continual input of susceptibles, will result in endemic persistence. A
further quantity of interest is the effective reproductive rate R which
defines the generation of secondary cases in a population which
contains susceptibles and immunes (as opposed to just susceptible
individuals). If the prevalence or incidence of infection is stable
through time, the effective reproductive rate R must equal unity in
value a situation in which each primary case gives rise, on average, to a
single secondary infectious individual.

Factors that influence R,

The simple expression R, = BXD (appropriate for directly transmitted
infections under the mass-action assumption) provides a framework
for assessing how different epidemiological factors influence trans-
mission success. Clearly, high transmission coefficients, long periods -
of infectiousness, and high densities of susceptibles enbance the
generation of secondary cases. Note that its value depends not only on
the properties that define the course of infection in an individual (i.e.
the duration of infectiousness, D), but also on attributes of the host
population such as the density of susceptibles, X, and the component
of B that determines the rate of contact or mixing. A good example of
the influence of population level characteristics is provided by the rate
of transmission of the measles virus in urban centres in developed and
developing countries. The more rapid rise in the proportion of
children who have experienced infection, with age, in developing
countries by comparison with developed regions is in part a

consequence of higher population densities and poorer living con-
ditions (McLean and Anderson 1983a).

Principles of control

The threshold condition for persistence of an infection, defined by
R, = 1, captures the essence of the problem of control. To eradicate an
infection we must reduce the value of the basic reproductive rate
below unity. Similarly, to reduce incidence the value of R, must be
reduced below the level that pertains prior to the introduction of
control measures. Reductions can be achieved by reducing the
infectious period D by, for example, the isolation of infectious persons
(perhaps recognized by dirical symptoms of disease), reducing the
number or density of susceptibles, usually by immunization, and by
altering the social and behavioural factors that determine transmission
such as improving living conditions to reduce overcrowding (in the
case of sexually transmitted infections, education can serve to reduce
rates of sexual-partner change or promote the use of condoms to-
lower the probability of transmission).

The threshold density of susceptibles

It is clear from the definition of R, given above that to maintain the
value of the basic reproductive rate above unity the density of.
susceptibles in the population must exceed a critical value. More
precisely, this critical level X is (for the mass-action assumption)
obtained by setting R, = 1 in eqn (15) and rearranging:
Xy = 1/BD. ‘ (16)

The aim of mass vaccination, aside from protecting the individual, is
to lower the density of susceptible peopie in the population. I
eradication is the aim of control then the density of susceptibles must
be reduced to less than X, in value.

Critical community size

The magnitude of R, and, concomitantly, the size of the threshold
density of susceptibles determines whether or not an epidemic of an
infection will occur when introduced into a given community. In
‘practice, however, for infections that induce lasting immunity in those
who recover, the long-term endemic persistence of infection will
depend on the renewal of the supply of susceptibles by new births or,
to a lesser extent, by immigration. As such, the net birth rate in 2
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‘community, which is itself dependent on the total population size (or
density), will influence the likelihood of persistence. There is,
therefore, a critical community size for the endemic persistence of a
given infection. In certain island communities, immigration of
susceptibles and infectious individuals may also play a role in the
long-term persistence of a given infection (Black 1966; Anderson and
May 1986, 1991). These factors are of growing significance as rates of
population movement increase as a result of, for example, improved
air transport services. Table 2 provides an example of the relationship
between community size and the likelihood of the endemic persistence
of the measles virus. ‘

The concepts of a threshold density of susceptibles and a critical
community size are most relevant for directly transmitted viral and
bacterial infections that induce lasting (= lifelong) immunity. The
production of long-lived infective stages or the use of vectors (such as
mosquitoes) lessen the importance of the human population density
for the persistence of an infection. In the case of sexually transmitted
infections, simple models suggest that there is no critical density of
susceptibles for persistence since the magnitude of R, can be
approximately given by
R, = BcD (17}

where c is the effective rate of sexual-partner change, D is the average
duration of infectiousness, and B'is the transmission probability per
partner contact (Anderson et al. 1986). This is simple to arrive at

Table 2 Island community size and endemic persistence of measles

Population size Percentage of months in

(units of which no cases were
100 000) reported

Hawai 5.50 0
Fiji 3.46 36
Icetand 1.60 39
Samoa 1.18 72
Solomon 1.10 68
Fr. Polynesia 0.75 92
New Caledonia 0.68 68
Guam 0.63 20
Tonga 0.57 88
New Hebrides 0.52 70
Gilbert and Ellice  0.40 85
Greenland 0.28 76
Bermuda 0.41 49
Faroe 0.34 68
Cook 0.16 94
Niue 0.05 95
Nauru 0.03 95
St Helena 0.05 96
Fatkiand 0.02 100

Source: Anderson (1982b).

theoretically. If; as stated eatlier, the incidence of cases of a sexually
transmitted disease is defined as

I=BXYIN . (8
then following the introduction of a single infectious person (Y = 1),
infectious over a period D, into a totally susceptible population (N =
X), the number of secondary cases will be represented by egn (17).

The dependence upon the number of susceptibles is lost. Biologi-
cally this is more difficult to grasp, but it does seem reasonable that the
rate of sexual-partner change should be more important to the
potential for spredd of a sexually transmitted disease than the number
of susceptibles in the population.

Regulation of infection within-human communities

The regulation (i.e. modulation or control) of the incidence or
prevalence of a particular infection within a human community is
largely determined by the level of herd immunity (i.e. the proportion
of the population immune to infection) and the net rate of input of
new susceptible individuals. A simple example serves to illustrate this
point. Consider a closed population with no inflow or outflow of
susceptible, infected, or immune individuals. If the densities of
susceptibles, infecteds, and immunes at time ¢ are defined by X(t),
Y(2), and Z(r) respectively, then under the mass-action assumption of
transmission the rates of change in the densities with respect to time
can be captured by three coupled differential equations:

dX/dr = - XY . . (19)
dy/dt = BXY - yY (20)
dZjdr = vY. (21)

It is assumed here that there is no latent period of infection
(individuals are infectious once infected), that the average duration of
infectiousness is given by D = 1/y where 7 is the rate of recovery from
infection, that immunity is lifelong, and that no losses occur due to
mortality. If we start with a totally susceptible population and
introduce a few infecteds, the occurrence of an epidemic will depend
upon the magnitude of the basic reproductive rate R, (R, = BXD) and,
concomitantly, whether or not the density of susceptibles exceeds the
critical threshold value X (X7 = 1/BD) (Fig. 9). Assuming that R, is
greater than unity then an epidemic will occur, but as time progresses
the density of susceptibles will decline (X—Y—~Z) until the effective
reproductive rate R is less than unity (i.e. susceptible numbers fall
below the threshold X,) and the infection dies out. )

For the persistence of the infection one of two things must bappen.
Firstly, suppose susceptibles are continually introduced into the
population at a net rate bN where b is the per capita birth rate and that
natural mortalities occur in each class at a per capita rate u. For
simplicity we further assume that net births exactly balance net deaths
(bN = uN) to maintain the total population at a constant size. With
these assumptions and provided that R, = 1, we find that the infection
persists in the population (Fig. 10(a)) with an endemic equilibrium
density of susceptibles again equal to X, and equilibrium densities of
infecteds, Y and immunes, Z, given by

=W+ PN - Xy) (22)
Z* = (Yhw)Y*. ' (23)

Secondly, suppose that there are no new births and no mortality but
that immunity is of short duration such that individuals leave the
immune class Z to regain the susceptible class X at a per capita rate o
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Fig. 9 Conditions for an epidemic. (a) Host density (susceptibles) below the
threshold level (at ime 0, X = 500, Y=100, Z =0, 3 = 0.0001,y=1,R, =
0.005, XT 10000). (b} Host density above the threshold level (at time 0, X =
500,Y=1,Z=0,8=001,v=1,R, =5 XT = 100).

(alpha) where 1/atis the average duration of immunity. We again find
that the infection can persist (Fig. 10(b)) (provided that R, = 1) with
equilibrium densities of infecteds and immunes of

= [o/(a + VN - X7) ' - (24)
= (Ylo) Y™, ' ©(25)

Note that the faster the loss of immunity (o large) the higher the
equilibrium density of infecteds and the lower Z*.

These two examples show how the net input of susceptibles and the
degree of herd immunity (as controiled by the duration of immunity
to reinfection following recovery) influence the likelihood that an
infection will persist endemically after the initial epidemic has swept
through a susceptible population following the introduction of an
infection. In these simple models of the transmission of direct-contact
infections, the density of infecteds tends to exhibit oscillatory
behaviour after the introduction of infection due to the rise and fall in
the density of susceptibles taking the effective reproductive rate above
and below unity in value. These oscillations are seen to damp down,
settling to the equilibrium values given analytically (e.g. eqns
(22)—(25)). This propensity to exhibit oscillatory behaviour is more

apparent if the infection is of short duration such that infection.

prevalence is sensitive to the availability of susceptibles and induces
long-lasting immunity since it takes some time, under these circum-
stances, for new births or loss of immunity to replenish the supply of
susceptibles such that R is again above unity in value. Maintenance of
these oscillations over the longer period would require a force to be
applied periodically—in reality this might derive from seasonal
changes in mixing rates as a result of school opening and closing. In
Fig. 10 it should be noted that the numbers infected, Y, are always
increasing when susceptibles, X, exceed the threshold X, (thus R < 1)
and are always on the decrease when X < X (when R < 1). Hence,
infection is being driven by the availability of susceptibles.

Other factors that can promote long-term persistence include the
production of infective stages that are able to survive for long periods

80000 ‘ Threshold a 12000
80000 1oooo
:. 70000
2 60000 - V \/ 8000 :
-— o
S 50000 usooo 5
3 40000F ‘ =
® so0000f ) X | 4000
[ 20000 ) P 1 s000
[ [ [ P
10000 |\ P ;o\ /
B AN WOV,
(@) 0 2 4 6 8
Time units
120000 148000
44400
x 1°°°°°E —'18008 >
H ) 136000
S 80000 M\ A\ i32000 B
% f\/}ty/\‘//\ ~ 28000 z
g 60000} U\y X/~ ~ J24000 £
@ b 420000 7
40000 416000 i
” S 112000 "
20000 - 18000
: 4000
0 10
) 0 1 2 3 4 5 68 7 8 9 10
Time units

Fig. 10 Conditions for the persistence of an infection in a community. in
each case solid curves represent susceptible numbers and dashed lines are
infected. (a) Renewal of susceptibles by births (inital conditions: X = 70 000,
Y =1,Z=930000, B = 0.0004, y= 26, p=0020=0 R,=BNIu+7)

= 15, X = 65 050). Notice that the numbers of susceptibles oscillates above
and below the threshold susceptible number, X; (marked) and that each
epidemic starts when susceptible numbers exceed the threshoid, X;, and
subsequently decays as susceptibles fall below the threshold, X,. Oscillations
of X and Y (and Z, not shown) gradually damp over time towards the
predicted equitibrium vatues X¥*, Y*, and Z* (see text).

{b) Renewal of susceptibles through waning immunity, at rate o. of 0.05
(thick lines) or 0.1 {thin lines) {corresponding average durations of immunity
are 20 and 10 units of time respectively) (other initial settings as for (a)
above except for no mortality, i.e. | = 0). Notice that for the two different
rates of loss of immunity the equilibrium susceptible numbers are the same
(X* = X;) since waning immunity has no impact on R,. However, a higher
rate of loss of immunity does resuit in an increase in numbers of infecteds at
equilibrium, Y*.
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in the external environment, sexual transmission, vertical trans-
mission, from mother to unborn offspring, vector transmission, and
the carrier state in which some individuals (for genetic or other
reasons) atypically harbour the infection for long periods of time (see
Table 1 and Fig. 3 for examples).

Herd immunity and mass vaccination

When an infection is persisting endemically in a community such that
the net rate at which new cases of infection arise is approximately
equal to the net rate at which individuals recover and acquire
immunity, the effective reproductive rate R is equal to unity in value.
This is known as endemic equilibrium. In practice, for many commbon
viral and bacterial infections the incidence of infection fluctuates both
on seasonal and longer-term cycles. The effective reproductive rate
therefore fluctuates below and above unity in value as the incidence
and density of susceptibles change (see Figs 6 and 10). However, the
average value over .a series of incidence cycles (both seasonal and
longer term) will be approximately equal to unity in the absence of
control intervention or changing social and demographic patterns.
The effective reproductive rate is reduced below the basic reproductive
rate in relation to the fraction of contacts that are with susceptible
individuals x = X/N, ie. by the simple equation

R=Ryx.

At equilibrium when R is on average unity, the proportion susceptible
represents a threshold, x*, below which infection rates would decline
(see Fig. 10). Thus from eqn (26) we see that at equilibrium' this
proportion susceptible x* is equal to the reciprocal of the basic
reproductive rate R, (ie. R, = Ll/x*). The magnitude of x* (and
therefore R;) can be determined from cross-sectional serological
surveys given data on the age structure of the population. If x; is the
proportion susceptible in age class i and pi is the proportion of the
population in the same age class then

=3

=1

(26)

(27)

ina population with 7 age classes. This assumes that the serological
profile is unchanging over time (Box 1).

To block transmission and eliminate an infection it is necessary to
raise the level of herd immunity by mass vaccination such that the
magnitude of the effective reproductive rate is less than unity in value.
If x* is the threshold susceptible proportion then 1 - x*, which we call
. represents the herd immunity threshold. Vaccinating a proportion
of the population p > p_ will lead to elimination of the infection.
Therefore this quantity is a critical level for mass vaccination and
since; from eqn (26), x* = 1/R,, p. may be related to the basic
reproductive rate in the following way: .

P.=1-1R, (28)

The relationship between p, and R, is depicted diagrammatically in
Fig. 11: the larger the magnitude of the infection’s transmission
potential (as measured by R,) the greater the proportion of the
population that must be immunized to block transmission. Nete that
it is not necessary to vaccinate everyone in the community to prevent
the spread of infection. The principle of herd immunity implies the

indirect protection of the individual conferred by the protection.
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Fig. 11 Relationship between the proportion of the population vaccinated
at or near birth and the likelihood of an infection persisting or, alternatively,
being eliminated. Infectious agents with high basic reproductive rates in
defined communities will be more difficult to control by mass vaccination as
illustrated by the example of measles and rubella in the United Kingdom.
(Source: Nokes and Anderson 1988.)

(= vaccination) of the population. The mechanism underlying this
concept is that of the critical density of susceptibles required to
maintain the magnitude of the reproductive rate above unity in value.

Age at vaccination

In general, immunization programmes are introduced by focusing on
cohorts of children such that the level of immunization coverage is
built up over many years of routine vaccination, that is as children pass
some age gateway. In these circumstances, p. of eqn (28) must be
interpreted as the proportion of each cohort vaccinated as soon after
birth as is practically feasible, taking account of the need to immunize
after the decay in maternally derived specific antibody. For most viral
infections the average duration of -protection against infection
provided by maternal antibodies is approximately 6 months, Clearly,
it will take many years of cohort immunization to achieve the desired
level of artificially induced herd immunity. A further complication is
that it is often the case that the average age at vaccination is higher than
what is epidemiologically ideal, resulting from the desire to link
vaccination with a delivery opportunity (such as first attendance at
school) or variation in the age of delivery resulting perhaps from
inefficiency in the co-ordination system or motivation of the
population. In this case, simple mathematical models suggest that the
level of vaccination coverage required to eradicate the infection under
a policy which vaccinates (with a vaccine with 100 per cent efficacy) at
an average age of V years is

p>{1+ (V/L)]/[lj+ (A/L)} (29)

where L is human life expectancy and A is the average age at which the
infection was acquired prior to the introduction of vaccination
(Anderson and May 1983). It is clear from this expression that
transmission cannot be interrupted unless the average age at vacci-
nation, V, is less than the average age at infection, A, prior to control.

Imperfect vaccines .

Various forms of vaccine failure can be specified. At the time of
delivery only a proportion of individuals may respond by generating
protective immunity postimmunization. This has been called vaccine

— - R e
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‘take’ (McLean and Blower 1993). In addition, a proportion of those
who initially ‘take’ still may not be able t6 fend off an infection if
exposed. This might be thought of as an exposure-dose-dependent
phenomenon and a vaccine exhibiting this effect might be said to
provide only a ‘degree’. of protection. Finally, vaccine-induced
immunity may wane with the passing of time such that a previously
protected individual once again becomes susceptible. Therefore a
vaccine may only confer protection for a particular duration.

The impact of these three vaccine failings is to reduce the
effectiveness or impact of a specified level of vaccination coverage and
therefore increase the level of coverage required to achieve elimination
of the infection. This new required vaccination proportion, p*, of an
imperfect vaccine, may be related to the critical proportion that needs
to be effectively vaccinated for elimination, p,, in the form

(30)

p'=pdo
where @ is the effective vaccine efficacy defined as
¢ = 0,0, (WK + ;)] (1)

(McLean and Blower 1993). Here @, is ‘take’, o, is ‘degree’, 1/®, is
‘duration’ (i.e. ®, is the rate of waning vaccine-induced immunity),
and [ is the death rate. The effects of ‘take’ and ‘degree’ are clearly
going to be in direct proportion to their magnitude. For example, if a
vaccine is being used to interrupt transmission of an infection with an
R, value of 10 (for which, from eqn (28), the critical proportion to be
effectively immunized, p,, is 0.9) but only 90 per cent of those
vaccinated respond (i.e. ®, = 0.9), then the new proportion needing to
be vaccinated is 0.9/0.9 = 1.0, i.e. 100 per cent coverage. The effect of a
vaccine waning over time is less obvious but may be seen from Fig, 12.
Here vaccine impact f due to the waning immunity effect (for a vaccine
which has perfect ‘take’ and ‘degree’) is related to the rate of loss of
vaccine-induced immunity, expressed as the time taken for 10 per
cent of those vaccinated to lose protection. We can see frorm this graph
that even a slight waning of immunity may cause a very significant
reduction in the impact of a vaccine, for example if 10 per cent of those
effectively vaccinated at birth lose their immunity by age 30 years
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Fig. 12 The impact of an imperfect vaccine. The time taken for 10 per cent
of individuais to lose their immunity after vaccination is related to the
impact of a vaccine, @ = /()L + ) (the vaccine is assumed to have perfect
‘take’ and ‘degree’). Here, the proportion whose immunity has waned in ©
years, p,, is related to the rate of loss of immunity by the expression p, =
exp(—®r).

vaccine impact is reduced by 20 per cent (i.e. @ = 0.8 from Fig. 12) and
in" our above example of an infection with R, = 10, 100 per cent
vaccination in infants would not be sufficient to eliminate
transmission. :

As a final note of caution, the components that make up the term
vaccine impact, @, have a compounding effect since they are
multiplied by one another. Thus even if each individually is of little.
significance, the compounded effect on impact may still be very
significant.

The prevalence of infection and the basic
reproductive rate

A further epidemiological feature arising from the existence of 4
critical density of susceptibles to maintain infection concerns the
relationship between the magnitude of the basic reproductive rate and
the prevalence of infection in a population in which the infectious
agent persists endemically. As depicted in Fig. 13 simple models
predict that the relationship is non-linear such that a marked
reduction in the endemic prevalence or incidence will only occur as
the transmission potential is reduced to an extent where it approaches
the threshold level R, = 1. The practical implication is that we should
not expect the decline in the incidence of infection induced by mass
vaccination to be directly proportional to the level of vaccination
coverage. The greatest changes are predicted to occur when coverage
attains high levels. ' :

Interepidemic period T

Many viral and bacterial infections that induce lasting immunity to
reinfection and which have high transmission potentials (R, large)
tend to exhibit oscillatory fluctuatiens in incidence. A good example is
that of measles which in the United Kingdom prior to mass
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Fig. 13 Predicted changes in the equilibrium proportion of a population
infected (i.e. the stable endemic prevalence of an infection) as the
transmission potential of the microparasitic agent varies. For infections '
where there is no loss of immunity, the level of the plateau of prevalence is
dependent upon the rate of input of new susceptibles (i.e. the birth rate, b)
and the duration of infectiousness, 1/. In the figure, b = 1/75 per year and
= 52 per year (i.e. 2 1-week infectious period) (closed bars) or ¥~ 13Aper
year (i.e. a 4-week period) (open bars). An important point to observe is
that the greatest changes in the proportion infected occur over the first few
increments of R, (irrespective of the magnitude of b or 1)
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vaccination oscillated on a seasonal basis (owing to the aggregation
and desegregation of children for school term and holiday periods)
and a longer-term 2-year cycle with years of high incidence separated
by years of low incidence (Anderson et al. 1984) (Fig. 6). Time-series
analyses reveal that these longer-term cycles for- infection such as
measles, mumps, rubella, and pertussis are not due to chance
fAuctuations but arise as a result of the dynamic interaction between
the net rates of acquisition of infection and immunity on recovery.
Simple models based on the mass-action assumption suggest that
the interepidemic period, T, of the longer-term cycles is determined by
the generation time of the infection, k, defined as the sum of the latent.
and infectious periods and the transmission potential of the infection
inversely measured by the average age at infection, A, where ‘

T =21(

This simple prediction matches well the observation for a variety of
common childhood infections prior to ‘mass vaccination (i.e. the
2-year cycles of measles, the 3-year cycles of mumps, the 4- to 5-year
cycles of rubella, and the 3- to 4-year cycles of pertussis). Non-seasonal
oscillation arises as a consequence of the exhaustion of a supply of
susceptibles, as an epidemic passes through a population, pius the time
lag that arises before new births replenish the pool to trigger the next
epidemic. As such the interepidemic period is also influenced by the
birth rate of the community (which-influences the average age of
infection, A, in eqn (32)). For example, in developing countries such
as Kenya with high birth rates, measles tends to cycle on a 1-year time
scale in urban centres as opposed to the 2-year cycle in the United
Kingdom prior to control (McLean and Anderson 1988b).

(32)

Parameter estimation

Survey data

Survey data on the incidence or prevalence of mfect.lon (past or
current) can be obtained in a variety of ways. Longitudinal (= through
time) data can be acquired by monitoring a cohort of people through
time and recording infection as it occurs. Horizontal (= one point in
time) — cross-sectional (= across age and sex classes) can be acquired
by a survey at one point in time or over a short interval of time, by the
examination of different age classes within the population. Such
surveys are of most use when based on serological examinations to
determine the proportion of individuals in a given age class who have
antibodies specific to the antigens of a particular infectious agent.
These cross-sectional serological profiles reflect the proportion ineach
age class who have, at some time in the past, experienced infection.
Case-notification data stratified by age and sex, and recorded over a set
interval of time such as 1 year, can be accumulated to indicate what
proportion of the cases occurs by any given age. This may then be used
to infer changes in the proportion who experience infection as a
function of age. Such data are clearly less reliable than serological
information since they are dependent on a lack of bias in reporting
efficiency by age class. Bias is to be expected if the seriousness of the
disease induced by infection changes with age (e.g. rubella in women
and mumps in men) or where the incidence of subclinical (i.e.
undetectable) infections is age dependent.

An alternative to the use of serum for the detection of specific
antibodies to infectious agents is saliva. More specifically, when
looking for systemic antibodies (e.g. immunoglobulin G and M) the
fluid which collects around the gums and under the tongue (as distinct

from salivary gland secretions) is rich in serum antibodies. This is
known as gingivocrevicular exudate or secretion. The disadvantage of
using salivary fluid for antibody detection is the low concentration of
immunoglobulin it contains relative to serum. Immunoglobulin G in

‘whole saliva is approximately 1000-fold less concentrated than in

serum, although in crevicular fluid it may only be five-fold more dilute
(Mortimer and Parry 1991). In recent years highly sensitive assays
have been -developed to overcome the dilution problems and,
accompanied by developments in devices for the collection of
crevicular fluid samples, have now been successfully employed in the
detection of antibodies to a variety of infections, including measles,
rubella, and mumps (Perry et al. 1993; Brown et al 1994) human
parvovirus, and hepatitis B virus (core antibodies) (Parry et al. 1989),
and HIV (Holmstrom et al. 1990; Behets et al. 1991; Van Den Akker et
al. 1992).

The advantages of using saliva over serum are numerous and
associated largely with the collection procedure. For example, sam
pling is non-invasive and is more acceptable which will assist in
response level, the collection process is easier and can be carried out by
non-technical personnel, and there is lower risk to both subject and
investigator (Mortimer and Parry 1991). Surveys based on saliva
collection offer great potential in the fields of epidemiology and
surveillance, including the measurement of population immunity in
the evaluation of the impact of vaccination programmes of infection
prevalence in assessing the rate of spread of infections, such as HIV,
through communities. The opportunity for longitudinal surveillance
will be beneficial to studies of spatial and temporal patterns of disease
spread and salivary diagnosis will become increasingly useful in
outbreak investigation and control.

When conducting surveys a number of points should be borne in
mind. Firstly, sample sizes should be as large as practically possible,
finely stratified by age (preferably infants to elderly people). How large
will depend upon what we wish the accuracy or power (see Sokal and
Rohlf 1981) of subsequent analyses to be, but 25 to 50 per yearly age
class is a rough working estimate. Secondly, the incidence of infection
may oscillate on a seasonal or longer-term basis. As such, it is good
practice to carry out surveys that span epidemic and interepidemic
years. Thirdly, systematic changes through time may occur in a given
population due to social, behavioural, economic, or other changes.
Examples include the observed reduction in the incidence of hepatitis
A in northern European countries over the past few decades due to
improved standards of hygiene and the rise in the incidence of
gonorrhoea in certain developed countries during the 1960s and 1970s
due to changes in sexual behaviour (e.g. increased rates of sexual-
partner change). Basic reproductive rates and rates of infection may
therefore change through time irrespective of the impact of control
measures.

The basic reproductive rate of infection

Estimating individually the component parameters that determme the
magnitude of the basic reproductive rate, R;, is fraught with many
problems. In the case of directly transmitted viral and bacterial
infections, we require a knowledge of the transmission coefficient, B,
the density of susceptibles, X, and the average duration of infec-
tiousness. In practice it is often easier to use indirect methods to arrive
at estimates of R, employing serological data finely stratified by age. As
discussed earlier, the rate of decay with age in the proportion
susceptible to infection provides measures of the age-dependent forces
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of infection (A(a)). These in turn can be used to obtain an estimate of
the average age, A, at which an individual typically acquires infection.
Mathematical models can be used to define a relationship between the
magnitude of R, and the average age at mfectxon In the simplest case
the relationship is of the form

R,= QA (33)
where Q denotes the reciprocal of the net birth rate of the community.
In developed countries where net births are approximately equal to
net deaths the quality Q is equal to the average life expectancy (from
birth) L (Anderson and May 1985a). More generally, if maternally
derived antibodies provide protection for an average of F years R, is
related to A by the expression . '

Ry= Q/(A-F). (34)
A simple example of the use of this equation is provided by the
transmission of the measles virus in the United Kingdom prior to the
introduction of mass vaccination. In this case the values of A, L, and F
were 5 years, 75 years, and 0.5 years respectively, leading to an R,
estimate of between 16 and 17. The inverse relationship between R,
and A makes good intuitive sense—infections with high transmission
potentials will tend to have low average ages at infection and vice versa.
These notions are depicted diagrammatically in Box 1, and Table 3

lists some estimates of Ry, A, L, and the critical level of vaccination
coverage to block transmission, P for a variety of common infectious
agents in defined localities.

An alternative method to that outlined above is based on the
predlcnon of simple models that the magnitude of R, is related to the
fraction of the population susceptible to infection, x* when the
infection has attained its endemic ethbnum The relationship is

simply
R, = l/x* ‘ (35)

and arises from the fact that at equilibrium the effective reproductive
rate is equal to unity in value (see eqn 26). Note that egns (33) and (35)
imply that the average age at infection, A, is inversely related to the
equilibrium fraction of susceptibles in a population, x* required to
ensure each primary case gives rise on average to at least one secondary
case (Box 1). In general, however, the method based on estimating the
average age at infection is the better one given good age-stratified
serological data. '

Latent and infectious periods

Two sources of data are avaihble to estimate latent and infectious
periods. The first derives from clinical, virological, and immunological

Table 3 Epidemiological parameters for a variety of childhood infections in developed countries in the absence of mass vaccination

Infection Average age at Location and date Data type Life expectancy L R
., (%) infection A (years) (yrars)
5.0 England & YVales, 194868 Case noitifications 70 15.6 94
5.5 USA, large families, 1957 Serology 70 14.0 93
8.0 USA, small famities, 1957 Serology 70 9.3 89
Whooping cough 4.5 England & Wales, 1944-78° Case notifications 70 175 94
4.9 USA, urban, Case notifications 60 13.6 93
1908-17
6.5 UISA, rural, Case notifications 60 10.0 90
1908-17
Chickenpox 8.6 USA, urban, Case notifications 60 74 86
1913-17 )
6.8 USA, urban, 1943 Case notifications 70 91
Mumps 7.0 UK, urban, 1977 Serology 75 91
57 Netherlands, urban, 1980  Serology 75 . 93
9.9 USA, urban, 1943 Case notifications 70 86
Diphtheria 104 USA, 191228 A Case notifications 60 84 )
Rubella 10.8 England, urban, 1980-84° Serology ' 75 7.3 86
10.2 GDR, 1972 Serology 70 72 86 )
Scarlet fever 8.0 USA, urban, Case notifications 60 8.0 88
1908-17 -
123 USA, rural, Case notifications 60 51 80
1918-19

Parameter definitions given in text (data from a variety of.sources). -

*R, = L/(A - F) where F is duration of maternally derived protection, assumed to last for 6 months in all cases, Note that no consideration of age- dependent forces of infection is given (se€

texdt).
®Encroaches on to vaccination era.

“Male serology—only females vaccinated under selective immunization policy.
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studies of the course of infection in individual patients. For some
common microparasitic infections, the presence of the infectious
agent in host tissues, excretions, and secretions can be directly
assessed. Durations of antigenaemia in body fluids and secretions or of
infective particles in specific cells will, in many instances, reflect the
'period over which an infected person is infectious to others (although
this is, of course, not always the case as, for example, with the latent
herpCSViﬂlseS). . ]

Alternatively, statistical methods can be employed in the study of
transmission within small groups of individuals. The classic data on
measles, collected by Hope Simpson (1952) in the Cirencester area of
England during the years 1946 to 1952, record the distribution of the
observed time interval between two cases of measles in 219 families
with two children under the age of 15 years. The bulk of these
observations represent case-to-case transmissions within a family.
However, in a small number of families, where the observed interval is
only a few days it may be assumed that these cases are double
primaries, both children having been simultaneously infected from
'some outside source. Statistical methods, based on chain binomial
models, can be used to derive estimates of the latent, infectious, and
incubation periods (Bailey 1973). A rough guide to these periods for
various common viral and bacterial infections is presented in Table 4.
Some of these estimates'are based on detailed analyses of case to case
data while others are more speculative.

Sexually transmitted infections

Rather different problems in parameter estimation, to those outlined’
above, are presented by sexually transmiited infections. By way of an
illustration and given the topicality of the infection, we focus on HIV.

The characteristics of most sexually transmitted diseases cause
their epidemiology to differ from that of commeon childhood viral and
bacterial infections. Firstly, the rate at which new infections are
_produced does not appear to be closely correlated with population
density. Secondly, the carrier phenomenon in which certain individ-
uals harbour asymptomatic infection is often important. Thirdly,
many sexually transmitted diseases induce little or no acquired
immunity on recovery. Fourthly, net transmission depends on the

degree of heterogeneity in sexual activity prevailing in the population
and the degree to which individuals in one sexual activity class

(perhaps defined in terms of the rate of sexual-partner change) mix.

with those in the same and in different classes (i.e. ‘who has sex with
whom’). ] o )

The basic reproductive rate, Ry, in its simplest form is determined
by the transmission probability, B, multiplied by the effective rate of
sexual-partner change, ¢, multiplied by the average duration of
infectiousness, D. Heterogeneity in sexual activity is a major influence
on the magnitude of transmission success. Recent national surveys of
sexual attitudes and lifestyles suggest that most people have few
different sexual partners and a few have many (Anderson and May
1988; ACSF 1992; Johnson et al. 1994). The distributions of reported
numbers of sex f)artners per defined period of time therefore tend to
be skewed with a long right-band tail where a few individuals report
many partners (Fig. 14). As pointed out earlier, under these
circumstances the variance in partner numbers, , is much greater in
value than the mean, m, and the effective rate of sexual partner change,
¢, is defined as c = m + (s%/m) (as in eqri 14). It follows that those with
high rates of sexual partner change play a disproportionate role
(relative to their proportional representation in a community) in the
spread of infection. In the case of HIV each component of R, is
difficult to measure due to the sensitivity and the practical difficulties
associated with the study of sexual bebaviour and the long and variable
incubation period of the disease AIDS induced by the infection. Over
the long incubation period infectiousness appears to vary widely for an
individual and between individuals.

As a consequence some indirect measure of transmission potential
is required. Mathematical models of transmission suggest that the
doubling time ¢, (the average time over which the number of cases of
infection doubles) of an epidemic of HIV in a-defined risk group (e.g.
male homosexuals), during the early stages of the epidemic, is related

to the magnitude of R, by the equation
t; = DIn(2)/(R, - 1) (36)

where D denotes the average duration of infectiousness. Curreént
estimates of the incubation period of HIV suggest a mean period of

Table 4 Average duration of infection classes for a variety of microparasites

Infectious disease La.tentﬁperioqlwi’ /f)' Sdays)

Meastes 69
Chickenpox 8-12
Rubella 7-14
Hepatitis A 13-17
Mumps 12-18
Polio 1-3
Smallpox 8-11
Influenza 1-3
Scarlet fever 1-2
Whooping cough 67
Diphtheria 25

“Time to ‘appearance of symptoms.
Source: Anderson (1982b).

Infectious period 1/y (days) Incubation peljioda (days)

67 11-14
10-11 13-17
11-12 16-20
19-22 30-37
48 12-26
14-20 7-12
2-3 10-12
2-3 1-3
14-21 2-3
21-23 7-10
14-21 2-5
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Sex and age group
Male 18—19 years

Heterosexuals (ACSF Investigators 1992)

§m 100, [ Famale 1818 years
gé FEE| Mele 25-34 _.'-:-a"-'
Sc B Fomale 25-34 years
& R e ——
2._3 4-5 6+
(a) Number of sex partners in the last year
Heterosexuals (Johnson et al. 1992) Sex and age group

B Male 16~24 vears

Percentage
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Fig. 14 Frequency distributions of the reported number of different sexual partners over the past year in
two surveys in (a) France (ACSF 1992) and (b) Britain (Johnson et al. 1992) of sexual attitudes and
lifestyles, stratified by age and sex. The similarities in the results of the two surveys.are striking.

approximately 8 years. It is probable that the average infectious period
is much shorter perhaps of the order of 2 years or so (however, this is
uncertain at present; see Anderson and May 1988). If we assume the
value of D lies between 2 and 6 years eqn (32) gives estimates of R; in
the range of 2.7 to 6, given an observed doubling time of around 10
months in male homosexual communities in the United States during
the earty 1980s (May and Anderson 1987). Of course, this method of
estimation is very crude, but it provides a rough guide to the degree to
which sexual habits must change in order to reduce the magmtude of
R, below unity in value (i.e. by a factor of 3 to 6).

More generally, certain of the parameters that determine the
magnitude of R, may vary between the sexes. This is certainly the case
for gonorrhoea (Hethcote and Yorke 1984) and it may be true for HIV.
In these circumstances, when considering transmission via heterosex-
ual contact, the basic reproductive rate adopts the form

R, = (B,Byc,c;D\D;)

where the subscripts 1 and 2 denote males and females respectively.
Further complications arise in the definition of the case. repro-
ductive number, R, when we take into account the pattern of mixing
between different strata of the sexually active population. For
example, in light of the data presented in Fig. 14 concerning
heterogeneity in reported rates of sexual partner acquisition per year
in France and Britain, it seems sensible to stratify the population by the
rate of sexual partner change into low-, medium-, and high-‘activity’
classes. The magnitude of any epidemics of a sexually transmitted
disease and the endemic level of infection in a community will depend
on the degree to which the small number of people with high rates of
sexual-partner change mix with the medium- and low-activity classes.
If mixing is random across activity classes the infection will be widely
disseminated in the community. However, if mixing is highly
assortative (i.e. like with like) the infection will tend to be restricted to

(37)

the small proportion of individuals in the high-activity class (the
so-called. ‘core’ group) with a few cases in the other classes. The
prevailing pattern of mixing is. therefore of great importance in
determining the prevalence of an sexually transmitted disease and the
degree to which it is disseminated in a defined community. Recent
studies of mixing patterns based on contact tracing via sexually
transmitted disease clinics suggest that mixing is more assortative than
random in character (Garnett and Anderson 1993). Once mixing is-
taken into account it is necessary to redefine transmission success in
terms of the number of secondary cases of infection in ‘group i
generated by contact with infectives in group j, R,;, where

Ry; = pyBeD. (38)
Here p; is the probability that a susceptible in group i has a sexual
contact with someone in group j.

Again, more generally, the population is structured by other
variables such as age, ethnicity, area of residence, and educational
attainment. Here again, bebavioural studies suggest a degree of
assortative mixing with respect to the choice of sexual partner—excffl’t
in contact with commercial sex workers.

Models and the design of control
programmes

‘Mathematical models can be of help in defining the targets for 2

control programme, in interpreting observed epidemiological changes
under the impact of control, and in discriminating between different
approaches (Nokes and Anderson 1987, 1988, 1991, 1992, 1993
Garnett et al. 1992; Gupta and Anderson 1992). In this section W€
consider two themes, namely, the design of mass vaccination
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programmes to control childhood viral and bacterial infections and
education to induce changes in sexual behaviour to control sexually
transmitted diseases.

Impact of mass vaccination

In practical terms, the level of vaccination coverage in a given
community or country is determined by a variety of economic and
logistical factors (developing countries) or motivational and legislat-
ive issues (industrialized countries). However, models can define the
ideal goal of a given programme. We have already outlined the
relationship between the critical level of vaccination coverage required
to block transmission, pc and various epidemiological (R,), demo-
graphic (net birth rate and life expectancy, Qand L), and logistical (V,
the average age at vaccination) parameters (see eqns (28) and (29) and
Table 3) and vaccine properties (see eqns (30) and (31)). In many
instances, the high transmission potentials of common childhood
viral and bacterial infections imply very high levels of infant
‘vaccination coverage if transmission is to be interrupted. If vaccine
efficacy is less than 100 per cent (e.g. the current pertussis vaccines),
then problems may arise in attaining these targets even if legislation
enforces vaccination oftall children before entry to school (as in the
United States). Models-emphasize the point that to obtain the best
effects very high levels of coverage should be aimed at with vaccination
at as young an age as is practically feasible given the complications
presented by the presence of maternally derived antibodies in infants.
Aside from defining targets for vaccination coverage, models can
assist in interpreting the impact of a given programme on epidemi-
ological parameters such as the incidence of infection, the average age
atinfection, and the interepidemic perjod. In a later part of this section
we consider the principles underlying an alternative approach to mass
vaccine intervention, that of pulsed immunization across age cohorts,
which has recently met with such success in controlling polio and
measles in Central and South America.

Incidence of infection

Immunization has the direct effect of reducing the number of cases of
infection as a result of the protection of the vaccinated individuals
(X—Z, see Fig. 3(d)). Since this reduces the number of infectious
persons in the vaccinated population, an indirect effect is a reduction
in the net rate of transmission of the virus or bacterium. This is the
principle of herd immunity, where susceptibles gain protection from
the vaccinated proportion of the population. Provided the infection is
able to persist endemically (i.e. the level of coverage is less than that
required for eradication), models suggest that the equilibrium
proportion of susceptibles in the population will remain constant
irrespective of the level of coverage below the critical .point for
eradication. This prediction is illustrated diagrammatically in Fig. 15.
The level of coverage simply reduces the proportion of seropositive
individuals who have acquired immunity via infection as opposed to
via vaccination. As mentioned earlier (see Fig. 13) the manner in
which the incidence declines as the level of coverage rises is non-linear
in form with the most dramatic reductions occurring as the pro-
portion vaccinated approaches the critical point for the interruption
of transmission. As the level of coverage approaches the critical point
the proportion of immune persons who possess vaccine-induced
immunity approaches unity.

Before immunization
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Fig. 15 Diagrammatic representation of the predicted impact of mass
immunization (against a typical childhood viral or bacterial infection) on the
age distribution of suséeptibility in a population. Before immunization (a)
there is a 'valley’ of susceptibles (S1) in the young age classes. Attempts to
fill in this valley by vaccination (b) reduces the rate of transmission of the
infection thus lowering the probability of unvaccinated individuals being
infected. As a consequence there is an upward shift in the ages of
susceptibles (*) from that pertaining before vaccination (dotted line). Two
points are important: (i) the number or proportion-of susceptibles after
immunization has begun (area S2) is roughly unchanged from that which
existed before immunization (area 51) and (ji) the average age of
susceptibles increases. (Source: Nokes and Anderson 1988.)

The average age at infection

As a direct result of reducing the net rate of transmission, vaccination
acts to increase the average age at which susceptibles acquire infection
over that pertaining prior to control (i.e. by reducing the probability of
coming into contact with an infectious person). Observation now
bears out the expectation of an increased average age of susceptibles
and of infection as a result of mass vaccination programmes. The
example in Fig. 16 shows the prevaccination (1982) serological profile
(or distribution of susceptibles by age) for rubella in Finland (Fig.
16(a)) and the.profile (for males only) in 1986, 4 years after mass
infant measles, mumps, and rubella (MMR) vaccine was introduced
(Fig. 16(b)) (Ukkonen and Von Bonsdorf 1988). The similarity with
Fig. 15 is striking. Also shown in Fig. 16 is the changing distribution of
diagnosed rubella cases, with a marked increase in the average age.
Later ‘we discuss how this change in the age distribution of the
incidence of infection can influence the incidence of disease arising
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Fig. 16 The observed impact of mass immunization against rubella in Finland (Ukkonen and Von
Bonsdorf 1988). (a) The prevaccination {1982) age seroprevalence of specific rubella antibodies (line)
with the age distribution of diagnosed cases (bars). (b} Four years after mass infant MMR vaccination
was introduced with the age range affected shown by the solid bar (data for males only) (other detils

as for (a)). (Source: Nokes and Anderson 1993.)

from infection if older people differ in their vulnerability to
complications and concomitant morbidity when compared with
younger people.

Interepidemic period

Simple models also predicted that a reduction in the transmission rate
in a vaccinated population will act to lengthen the interepidemic
period over that pertaining prior to control (Anderson and May
1983). This may be shown easily using our model in Fig. 10 if
proportion of all individuals entering the population are vaccinated at
the time of birth (starting from time unit 5 onwards), resulting in an
increase in the time taken for susceptibles to build up to threshold
numbers and, hence, an increase in the interval between epidemics

(Fig. 17). This pattern has been observed in various vaccinated
communities (Fig. 18).

Cautionary notes

The changes in epidemiological patterns of infection induced by
vaccination are not always beneficial. An increased interepidemic
period, for example, can induce complacency in the community with
respect to the need to maintain high levels of vaccination coverage.
Motivating parents to ensure that their children are vaccinated during
long periods of low incidence (the troughs in the epidemic cycle) can
be problematic particularly if there is some small but measurable risk
associated with vaccination. At the start of a mass immunization
programme the probability of serious disease arising from vaccination
is usually orders of magnitude smaller than the risk of serious disease
arising from natural infection. As the point of eradication is
approached, the relative magnitudes of these two probabilities must
inevitably be reversed. The optimum strategy for the individual (notto
be vaccinated) therefore becomes at odds with the needs of society (to
maintain her immunity) (Nokes and Anderson 1991). This issue—
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Fig. 17 Predicted impact of vaccination on the interepidemic period.
Vaccination of 50 per cent of all births was introduced at time 5 into the
model given in Fig. 10 (with the same initial settings).

which was central to the decline in the uptake of pertussis vaccine in
the United Kingdom during the mid to late 1970s—can be overcome
by legislation to enforce vaccination (as in the United States), but its
final resolution is only achieved by global eradication of the disease
agent so that routine vaccination can cease.

Other problems concern doubts over the role played by exposure
to natural infection in boosting vaccine-induced immunity and, in
some cases, worries over the duration of protection provided by
vaccination, If enough is understood about these problems mathemat-
ical models could be used to decide whether or not to revaccinate a
proportion of the immunized population and, if so, what is the best
age to revaccinate. Similarly, recent evidence for measles suggests that
passive immunity in infants of mothers whose own protection was
vaccine derived wanes more rapidly than in infants whose mothers
were naturally infected (Markowitz et al. 1996). The consequences of
this are that, on the one hand, infants become susceptible to infection
atan earlier age than was previously the case, but, on the other hand, it
may allow for the lowering of the age of vaccine delivery. The merits of
this latter issue could well be addressed using mathematical models.

Annual measles notifications

Year

Fig. 18 Annual measles notifications for the city of Oxford, England; for the
period 1960 to 1985. The introduction of measles vaccination in 1966 has
resulted in a significant increase in the period between epidemics. (Source:
Office of Population Census and Surveys, London.)

Variation in vaccine uptake

Ideally, vaccination coverage should be high and constant both
through time and in different regions of a country. In practice,
however, this is rarely the case. With respect to time, once incidence is
reduced to a low level, problems can arise in stimulating public health
workers to maintain coverage at high levels. More importantly, after
introduction, most immunization programmes show a slow increase
in rates of coverage. This obviously results in a delay in experiencing
the full benefits and must be recognized in assessing the impact of a
given policy. It takes many decades before the full benefits of a cohort
immunization programme are manifest. Model simulations of the
impact of such programmes on the incidence of infection and disease
clearly illustrate this point (Anderson and May 1983, 1985a,c). Of
greater -concern, however, is the variation in vaccine uptake in
different regions of a country. Levels of vaccine coverage for sentinel
antigens (measles, diphtheria 3, and pertussis 3) in the United
Kingdom, for example, varied widely between different regions in the
late 1980s (Fig. 19), a probiem which has been greatly diminished as a
result of improved vaccine programme co-ordination. To block
transmission countrywide effectively it is necessary to ensure that the
targets laid out in Table 3 are attained in each area. Otherwise, pockets
of infection in regions of low uptake will continue to trigger small
epidemics in other areas. The upsurge of mumps in certain states in
the United States in the late 1980s {Wharton et al. 1988) is an example
of the potential hazards of spatial variation in vaccine uptake.

Non-uniformity in human population density

Non-uniformity in the spatial distribution of humans, with some
people living in dense aggregates and others living in isolated or small
groups, can lead to heterogeneity in transmission rates. Models
suggest that this can result in the transmission potential of an infection
(R,) being greater on average than suggested by estimation procedures
which assume spatial homogeneity (Anderson and May 1984; May
and Anderson 1984). Under these circumstances, theory suggests that
the optimal solution appears to involve ‘targeting’ vaccination
coverage in relation to group size with dense groups receiving the
highest levels of coverage. The optimal programme is defined as that
minimizing the total, communitywide number of immunizations
needed for elimination or for a defined level of control. This strategy
reduces the overall proportion that must be vaccinated to block
transmission, compared with that estimated on the assumption of
spatial homogeneity. This conclusion has practical significance for the
control of infections such as measles and pertussis in some developing
countries, where rural-urban differences in population density tend
to be much more marked than in developed countries (Anderson and
May 1991). It is probable that in many regions of Africa and Asia,
diseases such as measles cannot persist endemically in rural areas
without frequent movement of people between low-density (rural)
and high-density (urban) populations. Under these circumstances,
transmission might be blocked in both regions by high levels of mass
immunization in the urban centres alone.

Age-dependent factors

Analyses of case-notification records and serological profiles suggest
that, for many common infections (measles, rubella, and pertussis),
the per capita rate of infection (A(a)) depends on the ages of
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Fig. 19 Regional variation in immunization uptake for sentinel agents in England, 1986. (Source: Nokes and

Anderson 1988.)

susceptible individuals, changing from a low level in the 0- to 5-year
age classes, via a high level in the 5- to 15-year age classes, back to a
lower level in the adult age classes (Fig. 5). This. is of interest both
because it reflects behavioural attributes of human communities and-
because of its impact on the predicted level of vaccination required to
eliminate transmission. The high levels of the force of infection in the
5- to 15-year-old classes are thought to arise as a consequence of
frequent and intimate contacts within school environments (Ander-
son and May 1985c; Nokes et al. 1986; Anderson et al. 1987).
Theoretical studies which take account of age dependence in the force
of infection predict somewhat lower rates of vaccination than those
arrived at under the simple mass-action assumption (Table 3).
However, it should be emphasized that the values listed in Table 3
provide a good first approximation of the targets to be obtained in a
vaccination programme. The reason why the observed age-related
changes in the force of infection influence the predicted level of
coverage relates to the tendency for mass vaccination to shift the age
distribution of susceptibility (Figs 15 and 16). Susceptibles who avoid
infection and vaccination may move from an age class with a high
force of infection into an older class with a lower rate.

Does mass vaccination always reduce disease
incidence?

The risk of complications arising from infection is often dependent
upon the age at which exposure occurs. The newborn are particularly
vulnerable due to their immunological immaturity and are therefore
more likely to suffer morbidity and even mortality (Fig. 20).
Protection by maternally derived antibody moderates the risk during
this time of great vulnerability but, in developing countries, factors
such as malnutrition and high incidences of secondary ‘opportunist’
infections can result in high mortality rates as a result of infant and
childhood viral and bacterial infection. In general where the risk of
serious disease is higher in the young than old people, mass
vaccination will always act to reduce the incidence of disease.

In developed countries case fatalities are much less common and
the greatest problem is morbidity and the risk of serious disease. Of
particular concern are infections where the risk of severe compli-
cations increases with age (Fig. 21). Whether this trend is important
depends on the quantitative details of such factors as how risk changes
with age, the average age at which the vaccine is administered, the
average age at infection, and how the rate (or force) of infection
changes with age prior to the introduction of immunization (Knox
1980; Anderson and May 1983, 19854; Anderson et al. 1987; Nokes
and Anderson 1991) (Fig. 21).

Rubella and mumps are clear examples because of the risk of
congenital rubella syndrome in infants born to mothers who
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Fig. 20 Age-dependent mortality associated with infection from a variety of
childhood viruses and bacteria. (Source: MiMS 1987.)
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Fig. 21 Age-dependent risk of complications from infection: (a) the
likelihood of fetal transmission of rubella virus with concomitant risk of
congenital rubella syndrome is directly related to age-specific fertility of
women (data for England and Wales 1985 from OPCS Monitor FM| 86/2)
{b) changes in the risk of complications from mumps infection in the United
Kingdom relative to age and sex. In addition to meningitis and encephaiitis,
males (M) may suffer orchitis (data from Anderson et al, 1987). Note here
that the term comparative risk, refers to the risk compared with other age
classes. (c) Measles encephalitis per 100 000 cases in the United States.
(Source: Anderson and May 1983.)

contracted rubella in their first trimester of pregnancy and the
occurrence of orchitis and the associated risk of sterility in post-
pubertal males plus infection of the central nervous system following
mumps infection. The crux of the problem relates to how mass
vaccination changes the age profile of the incidence of infection. Any
level of coverage will reduce the incidence of infection but by
increasing the average age at which those still susceptible acquire
infection certain levels of coverage may increase the incidence of
disease. The important question is whether the increase in the
proportion of cases in older people will result in an increase in the
absolute numbers of cases of serious disease.

This problem has resulted in the adoption of different vaccination
programmes against rubella (to control congenital rubella syndrome)
in different countries (Table 5). Until the introduction of MMR
vaccine in the United Kingdom in 1988, girls only were vaccinated at
an average age of around 12 years, so as to allow rubella virus to

circulate in males and young females and create naturally acquired
immunity in the early years. By contrast, it has always been the case in
the United States for both boys and girls to be vaccinated at around
2 years of age, with the aim of blocking rubella virus transmission.
Mathematical models predict that the United States policy is best if
very high levels of vaccination (80 to 85 per cent of each yearly cohort)
can be achieved at a young age, while the United Kingdom policy is
better if this cannot be guaranteed (Fig. 22). A mixed policy is
predicted to be of additional benefit over the selective policy alone if
moderate to high levels of vaccine uptake among boys and girls can be
achieved at a young age (60 per cent) (Anderson and Grenfell 1986).

The process of using mathematical models to evaluate the impact
of a particular mass vaccination policy in a community is detailed in
Box 4, in this casé for mumps. At the time of the introduction of MMR
infant vaccination in the United Kingdom in November 1988 such
studies as these suggested that provided moderate to high levels of
coverage (6065 per cent) could be achieved then the change in policy
was unlikely to increase the incidence of serious disease (Anderson et
al. 1987). Following the implementation of the MMR vaccine,
coverage rose from the level of uptake for measles vaccine at the time
of around 70 per cent by age 2 years (the level of update for measles
vaccine at the time) to 90 per cent within the space of 2 years.
Thoughts have now turned to the required strategy for elimination of
these three infections and use is being made of mathematical models
to explore the possible options, such as a two-dose schedule {Babad et
al. 1995). For rubella, and specifically for the issue of when to remove
the selective arm of the vaccination strategy, we now have the example
from the Scandinavian countries to guide our policy. Data from
Finland, for example, clearly show the need to continue schoolgirl
vaccination until the cohorts with high-level immunity through infant
vaccination span the entire high-fertility age groups. Note that this
concurs with predictions made prior to the observations becoming
available (Nokes and Anderson 1987).
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Fig. 22 Effectiveness of different rubella immunization programmes.
Changes in the predicted case ratio (i.e. the average number of rubella
infections in pregnant women after the introduction of immunization divided
by average prevaccination number) under increasing levels of coverage for
two types of policy, namely, selective immunization of girls of average age
12 years or mass vaccination of children (aged 2 years). Low tc medium
levels of uptake favour adoption of a selective immunization programme
compared with mass vaccination which has the undesirable effect of
increasing the average age at infection,

739



740

6 EPIDEMIOLOGICAL AND BIOSTATISTICAL APPROACHES

Table 5 Strategies of rubella immunization

Selectivg

Mass cohort

Aim
infection

Eliminate congeniml rubelia, not rubella

Eliminaﬁe rubella infection, and so congenital rubella

Age at vaccination Prepubertal girls (10-15 years)

Boys and girls of-1—2 years

Philosophy 0] Build upon levels of herd immunity @) Reduce circulation of wild virus in community,
attained through childhood especially children
(i) Reduce the proportion of susceptible (i) Lower the probability of susceptible women catching
women of childbearing age infection via the action of herd immunity
(i) Allow continued circulation of virus in

male and young female segments of the

population

Overall incidence of infection

Very litle impact at any level of coverage

(i) Reduction in cases in a non-linear manner as vaccine
level increases (see Fig. 13)

(i) Increase in average age at infection
Other concerns (i) Cannot eradicate congenital rubella 0] Proportion of remaining cases increases in older age
unless 100 per cent of women ‘at risk’ classes, hence possible to increase congenital rubella
are immune (via infection in childhhod at certain levels of immunization
or immunization)
(i1 Herd immunity largely natural with (i) Herd immunity ultimately all vaccine induced. Less
* ‘continued re-exposure to infection and solid? No boosting of immuriity by rée‘exposure to
boosting of antibody response virus ‘
Which policy? Suitable for lower levels of vaccination Suitable if high levels of upﬁke can be achieved (see Fig. 22)

coverage (see Fig. 22)

Country (as example) UK

USA

The strategy of pulse vaccination

The use of the alternative strategy of pulse vaccination as a method of
control of childhood vaccine-preventable diseases has gained promi-
nence in the early 1990s largely as a result of success in the Americas
against polio and measles (De Quadros et al. 1991). Pulse vaccination
may be defined as the repeated application of vaccine across a wide age
range (Agur et al. 1993; Nokes and Swinton 1995) and usually takes
the form of vaccination days or campaigns repeated once or twice
yearly in which all children under a specified age (e.g. 15 years) are
offered vaccine (usually irrespective of vaccination history). Repeated
vaccination days or weeks in Central and South America have seen the
elimination of polio from the region since 1991 and very marked
reductions in measles incidence. Although a basic understanding of
the rationale underlying puise vaccination guided its use in the Latin
American context, there is good reason to seek greater quantitative
insight into the underlying mechanism of action prior to advocating
more widespread use in other regions with different social patterns
and health infrastructure.

Remember that it is the presence of a threshold density or
proportion of susceptibles in a population which enables endemic
persistence of acute vaccine-preventable infections (i.e. infections
requiring close contact to effect transmission and which develop
lasting immunity following recovery). Vaccination of a fraction of an
endemic proportion susceptible-lowers the effective reproductive rate
below unity and incidence declines (this may be quite a considerable
reduction if a pulse is administered across a wide age range). Lowering
the number of infectious persons in the population resuits in a
lowering of the force of infection acting upon susceptibles. In turn

fewer infections leads to a build-up once more in susceptible numbers
to the threshold level. The principle behind pulse vaccination rests
upon these simple conditions. The aim of repeatedly pulsing is to
maintain susceptible numbers below the threshold density or fraction
and thereby maintain a continual decline in incidence (ie. by
maintaining R < 1). In practical quantitative terms we are interested
in the timing of successive pulses to achieve this objective.

The interpulse interval depends upon three factors: what fraction
of the population are susceptible at endemic equilibrium, how much
of this susceptible population is immunized as a result of the
campaign, and how rapidly are susceptibles replenished after a
campaign. Translating these into epidemiological terms, we note that
the proportion of the susceptible population vaccinated in a single
pulse is p’x* where p’ is the vaccination coverage and x* is the endemic
fraction susceptible (related to the basic reproductive rate in the form
x* = 1/R,). In addition, if the total population is approximately
constant in size, then, ignoring any further infection, the rate of
replenishinent of susceptibles by births is equal to the death rate, 4 =
1/L (where L is life expectancy at birth). Therefore the minimum time
taken after pulsing to recover the equilibrium fraction, ie. the
interpulse period T, is

T,=p'x*L (39)
and, since x* = 1/R, = A/L, we obtain I
T,=pA (40)

(Agur et al. 1993). This gives the common-sense result that if all
susceptibles were to be immunized by a pulse of vaccine, i.e. p =10,
then the time taken to recover the threshold fraction would be
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Box 4 Epldemlology and control of mumps virus infection
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equivalent to the average age at infection. The higher the average age at
infection, that is the lower the transmission potential of the infection,
the higher the endemic fraction susceptible and the consequent
increase in the permitted interval between pulses. An observation
from this analysis is that it is possible to eliminate an infection using a
pulse vaccination proportion, p’, which is less than the critical level of
coverage predicted to be required for a continuous immunization
process. The reason for this is that by vaccinating repeatedly across an
age range, some individuals will receive multiple opportunities to
receive the vaccine dnd there is therefore a build-up of vaccine-
induced immunity with increasing age.

One complication that ought to be considered is the effect of
combining a routine vaccination programme with a pulse regime
(Nokes and Swinton 1995). Clearly, if a fraction of susceptibles are
being vaccinated at or near to birth, then the rate of replenishment of
susceptibles following a pulse will be lowered. It may be shown that,
provided that the vast majority of individuals acquire immunity some
time during their lives, the interpulse period in the presence of a
routine vaccination programme in which a proportion p are vacci-
nated is
T,=p'A/(1-Dp). (41)
In other words the pulse interval is lengthened in direct relation to the
new fraction of births which 4re susceptible, (1 - p).

Major simplifying assumptions underlie these simple relationships
for the interpulse period. It is assumed that a proportion p' of
susceptibles of any age are vaccinated and that on successive occasions
each individual in 2 population has the same likelihood of being
vaccinated. Such assumptions entail that the expressions given
provide simple guidelines to aid understanding. Models of greater
complexity are required which expand upon these ideas to give more
practical guidelines (Nokes and Swinton 1995).

Menitoring the impact of control programmes

There is an ever-growing need to establish a co-ordinated surveillance
programme to monitor the impact of control programmes against
microparasitic infections (Nokes and Cutts 1993). The needs include
the following.

1. To establish the impact of a specified control programme on a
particular outcome variable, such as incidence of infection. This is
of increasing importance as control programmes near their goals
of elimination, where indicators of process, such as vaccination
coverage, simply do not relate well enough to outcome.

2. To establish the accuracy of outcome indicators, such as notifi-
cations of infectious disease, the efficiency of which commonly
fall off dramatically as incidence declines. This is crucial to the
identification of outbreaks (and perhaps areas of low vaccine
uptake) and to the validation of elimination targets, for example
surveillance of acute flaccid paralysis as a marker for
poliomyelitis.

3. To monitor the appearance of wild-type variants, either intro-
duced from other countries, or which have gained selective
advantage over persisting strains in the presence of high selective
pressure of vaccination or chemotherapy. R

Various modern tools are now at our disposal to assist in this
process. For example, saliva antibody assays which are being used to
confirm clinical diagnoses and may be useful in establishing longitudi-

nal surveillance systems and molecular probes by which to identify the
origins of strains in infection outbreaks and the arrival of variants able
to circulate in the presence of high-level vaccine-associated immunity.
Mathematical models also have a role to play in this area of
epidemiology. They facilitate the assessment of the impact of mass
vaccination programmes through their predictive capability, where
suitable outcome indicators may not be available (e.g. infections with
poor differential diagnosis) or may only be measurable many years
after a programme has begun (e.g, hepatitis B virus and the occurrence
of hepatic disorders). In addition, models can be used to explore the
potential (and the time course) for strain variants to establish
themselves in highly vaccinated populations, where they would
otherwise normally be out-competed by a dominant (higher R)
strain, for which immunity through vaccination is more solid.

Changes in sexual behaviour and the
transmission of sexually transmitted infections

The current pandemic of HIV and AIDS, and the absence of effective
drugs and a vaccine to combat infection, has focused much attention
in recent years on how to induce changes in sexual behaviour via
education and media publicity campaigns to slow the spread of
infection. The most important behaviour relevant to the rate of spread
is the distribution of the rates of acquiring new sexual partners within
a defined population (Fig. 8). A major characteristic of this behaviour
is the heterogeneity between individuals within a given community. A
central question in this problem is whether it is best to aim health
educational programmes at the whole population, with the aim of
reducing average rates of sexual-partner change or whether it is best to
target education at high-risk groups such as those with very high rates
of sexual-partner change (in either male homosexual or heterosexual
communities). This is a complicated question and its resolution
depends, in part, on a detailed quantitative knowledge of the pattern of
sexual behaviour within a given population. However, simple math-
ematical models can help to provide some clues to the resolution of
this issue. Of particular importance in understanding the dynamics of
transmission of HIV is determining how sexual behaviour influences
the magnitude of the basic reproductive rate, R,. As discussed earlier,
for a sexually transmitted disease such as HIV, the magnitude of R, is
(in simple terms) defined by the probability of transmission per
partner contact, B, multiplied by the effective rate of sexual-partner
change, ¢, multiplied by the average duration of infectiousness, D, of
an infected person. As noted earlier the variance in the rate of
sexual-partner acquisition is typically much larger in value than the

‘mean and, hence, those with high rates of partner change play a

disproportionate role (relative to their proportional representation
within a sexually active population) in the spread of infection (Fig.
14). This simple theoretical result suggests that greater benefit is to be
gained (in termos of reducing R,) by targeting education at those with
higher than average rates of sexual-partner change. In practice the
identification of such individuals is problemati¢ in the absence of
detailed survey data that relate this behaviour to other characteristics.
The surveys of sexual behaviour that have been completed to date
show a strong age dependency (with young adults having the highest
rates of sexual-partner change) but little else of help in identifying

‘correlates (ACSF 1992; Johnson et al. 1992). However, attendees at

sexually transmitted disease clinics are an important target group,
since sexually transmitted diseases other than HIV are more fre-
quently present among those with high rates of partner change. Small
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changes in behaviour in the highly sexually active are likely to have a
major impact on the prevalence of sexually transmitted diseases in a

community.

Conclusion

We have glossed over much detail and ignored many complications in
model formulation and analysis in this chapter. The interested reader
is therefore urged to consult the source references. Our aim has been
to define, as simply as possible, the central concepts underpinning the
study of the transmission dynamics of infectious diseases and the
major conclusions that have emerged from the development and
analysis of mathematical models of transmission and control.

The recent convergence of mathematical theory and observation in
epidemiology has created a powerful set of tools for the study of the
population biology of infectious disease agents. At present the
potential value of these techniques is not widely appreciated by public
health scientists and medical personnel. Many people have rightly
criticized models that pursue the mathematics for its own sake,
'making only perfunctory attempts to relate the findings to epidemi-
ological data. But there is a converse danger which is less widely
understood. The complexities of the course of infection within an
individual and its spread between people are such that years of clinical
experience and the most refined intuition will not always yield reliable
insights into the factors that control the transmission dynamics of a
given infectious agent and how these are influenced by perturbations
introduced by control measures. Moreover, insensitive use of a
computer will not always help in understanding these problems, for if
a computer is given inappropriate instruction it will usually give
inappropriate answers. What is needed, in our view, is increased
collaboration between epidemiologists and mathematicians, with the
models being founded on data (and with their predictions being tested
against available facts) and with verbal hypotheses being founded on
clear mathematical statements of the assumptions. We hope that the
contents of this chapter stimulate interest in this goal.
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