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Summary

Infectious disease epidemiology is characterized by the presence of at least one other ac-
tive player in addition to the human population, namely, the infectious agent or parasite.
The presence of this additional propagating population sets the stage for aspects specific
to infectious disease epidemiology. First and foremost is transmission. Transmission from
one host to another is fundamental to the survival strategy of the infectious agent, since
any host will eventually either clear the infection or die, even if from an unrelated cause.
A consequence of transmission is that, unlike noninfectious diseases, the occurrence of
infectious disease events in individuals depends on the occurrence of that disease in other
members of the population. Sir Ronald Ross (1916) called this dependence of disease
events in infectious diseases “dependent happenings.”

Although most methods used in general epidemiology are applicable to the study of in-
fectious diseases, additional concepts are needed to describe the phenomena resulting
from the dependence of disease events. These include infectiousness, the transmission
probability, contact patterns, and the basic reproductive number. An intervention in in-
fectious diseases can also have several different kinds of effects, including direct effects
on a person receiving the intervention as well as indirect effects on other individuals.
These different effects require additional parameters and study designs for their evalua-
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tion. Exposure to infection plays a special role because exposure to infection is necessary
for infection and disease to occur. The components of exposure to infection, such as the
contact and mixing patterns of the infective and susceptible hosts, as well as the degree
and duration of infectiousness, need to be taken into account in infectious disease epi-
demiology.

Even when conventional epidemiologic concepts are applicable, they should be used in
infectious disease studies only after close examination of the underlying assumptions.
Because the temporal evolution of the host population and the disease process under
study can be quite rapid compared with the time frame of the study, conventional epi-
demiologic methods that assume stationarity can produce very biased estimates of effects
in infectious disease epidemiology.

Epidemiology of infectious diseases is an extension of ecology and evolution. From our
anthropocentric point of view, we say a person with the agent is infected. From the point
of view of the infectious agent, however, humans are simply home and lunch, their eco-
logic niche (see Burnet and White; 1972; McNeill, 1976). Because each infectious agent
has its own life cycle, immunology, ecology, evolution, and molecular biology, studies of
infectious disease require an understanding of all of these aspects. Most of these consid-
erations are beyond the scope of this chapter. Emerging and reemerging infectious dis-
ease and the development of drug resistance will not be considered here.

In this chapter, we introduce a few important concepts of infectious disease epidemi-
ology, focusing on the consequences of the dependent structure of disease events for mea-
sures of effect and study design. Some of the ideas about dependent events are applica-
ble beyond the infectious disease setting. An example is drug addiction, in which the
number of people becoming addicted depends partly on the number of people already ad-
dicted. On the other hand, not all diseases caused by infectious agents result in a depen-
dent happening structure. Examples include Lyme disease and sylvan yellow fever. These
are infectious diseases called zoonoses that generally circulate in animal hosts and are oc-
casionally transmitted to humans, so that within the human population the events are not
dependent. |

TIME LINES OF INFECTION

The time lines of infection within the host can be described with reference to the dy-
namics of infectiousness and of disease (Fig. 27-1). Both begin with the successful in-
fection of the susceptible host by the parasite. The time line of infectiousness includes the
latent period, the time interval from infection to development of infectiousness, and the
period of infectiousness of the host, during which time the host could infect another host.
Eventually, the host becomes noninfectious either by recovery from the infection, possi-
bly developing immunity, or by death. The host can also become noninfectious while still
alive and still harboring the parasite.

The time line of disease within the host includes the incubation period, the time from
infection to development of symptomatic disease, and the symptomatic period. The prob-
ability of developing symptoms or disease after becoming infected is the pathogenicity
of the interaction of the parasite with the host. Eventually, the host leaves the sympto-
matic state either by recovering from the symptoms or by death. The host becomes an in-
fectious carrier if he recovers from symptoms but remains infectious. For example, peo-
ple infected with hepatitis B often become infectious carriers. If the parasite has initiated
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FIG. 27-1. Time lines for infecton and disease.

an autoimmune response, symptoms can continue after the parasite is cleared. Rheumatic
heart disease can develop after streptococcus B infection is cleared. An inapparent case
or silent infection is a successful infection that does not develop detected symptoms. In-
apparent cases can be infectious.

The terminology differs from that used in noninfectious disease epidemiology. The
term latent period has an entirely different meaning from that just described, corre-
sponding to the period from development of asymptomatic disease to development of
symptoms. The incubation period in infectious disease is a combination of what are
called the induction and the latent periods in noninfectious diseases. While the disease
process and its associated time line are important to the infected person and to a physi-
cian, the dynamics of infectiousness are more important for propagation of the parasite
and for public health.

The configuration of the two time lines in Fig. 27-1 and their relation to one another
are specific to each parasite and can have important public health consequences and im-
plications for study design. In chickenpox, the latent period is shorter than the incuba-
tion period, so that a child with chickenpox becomes infectious to other people before de-
veloping symptoms. A study of chickenpox transmission in school children revealed that
most transmission occurred before the development of symptoms, thus requiring children
with chickenpox to stay home from school does not make much sense from the point of
view of trying to reduce transmission. Malaria from Plasmodium falciparum has an in-
cubation period of about 14 days in the human host. The stages of the parasite that are
infective for mosquitoes occur about 10 days after the development of malaria symp-
toms. Thus, the latent period is about 10 days longer than the incubation period, so early
treatment of symptoms could have an important effect on transmission. Human immu-
nodeficiency virus (HIV) infection is a prime example of a public health nightmare in
which the infectious agent has a short latent period and a long incubation period. The la-
tent period is on the order of days to weeks, while the median incubation period to ob-
served symptoms is greater than 10 years. A person infected with HIV can infect other
people for a long time before disease is apparent.
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TRANSMISSION PROBABILITY

A fundamental parameter of infectious disease epidemiology is the transmission prob-
ability. The transmission probability is the probability that, given contact between an in-
fective source and a susceptible host, successful transfer of the parasite will occur so that
the susceptible host becomes infected (Fig. 27-2). Estimating the transmission probabil-
ity and its variability in a population is important for understanding the dynamics of in-
fection and the effects of interventions. The transmission probability depends on charac-
teristics of the infective source, the parasite, the susceptible host, and the type and
definition of contact. The infectious source could be another person, as in transmission
of measles or mumps. It could be an insect vector, such as the mosquito vector of the
malaria parasite, or.a contaminated inanimate object, such as drinking water containing
cholera bacteria or needle syringes infected with hepatitis B virus.

The concept of a contact is very broad and must be defined in each particular study.
The mode of transmission of a parasite determines what types of contact are potentially
infectious. Different definitions of a potentially infective contact for a given parasite,
even within the same study, are possible. In a study of whooping cough transmission, a
potentially infective contact could be defined as being in the same school on one day with
someone with culture-proven whooping cough. Alternatively, it could be defined as liv-
ing in the same house during the period of presumed infectiousness of the person with
whooping cough. In an HIV study, a potentially infective contact could be defined as
each sex act between two sexual partners in a steady relationship, one of whom is infected
with HIV. Alternatively, the partnership over its entire duration could be defined as one
potentially infective contact. In any study or analysis, it is important to use a precise op-
erational definition for a potentially infective contact. -

Difficult problems of infectious disease epidemiology are identifying infectious
sources and susceptible hosts, quantifying infectiousness and susceptibility, knowing the
strain of the parasite, and defining and identifying contacts between infectives and sus-
ceptibles.

Estimating the Transmission Probability

There are several methods for estimating the transmission probability. We illustrate two
broad approaches here. In the first, infectious individuals are identified and the propor-
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FIG. 27-2. Transmission from an infective to a susceptible host during contact.
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tion of contacts that they make with susceptibles that result in transmission is determined.
In the second, susceptibles are identified and data gathered on the number of contacts
they make with infectives and their infection outcomes. To illustrate the first approach,

we present the conventional secondary attack rate. To illustrate the second, we present the
binomial model.

Secondary Attack Rate

The general idea of the secondary attack rate or case-contact approach of estimating
the transmission probability is to identify infectious persons and then to identify the sus-
ceptible people who make contact with them by some definition of contact. The initially
identified infectious persons are called the primary or index cases. The conventional sec-
ondary attack rate (SAR) is the probability of the occurrence of disease among known
(or presumed) susceptible persons following contact with a primary case:

number of persons exposed who develop disease
total number of susceptible exposed persons

SAR = [27-1]
The SAR is actually a proportion, not a rate. It is often defined for exposure to an in-
fective within some small population unit, such as a household, classroom, or school
bus. Within this unit, mixing and exposure to infection are assumed to be homogeneous.

Example. The household SAR is the probability that a susceptible individual living
within the same household with an infectious person during his or her period of infec-
tiousness will become infected. The household SAR is a commonly used parameter for
estimating vaccine efficacy in directly transmitted infections, such as pertussis, mumps,
chickenpox, and measles (Fine et al., 1988; Orenstein et al., 1988). The data required are
the time of onset of disease for each case in the household, as well as knowledge of who
is susceptible. Estimates or assumptions about the minimum and maximum incubation
periods, £; and E>, respectively, the latent period, and the maximum time, 7, that a person
remains infectious are also required (Fig. 27-3) and sometimes obtained from other stud-
ies. One sometimes assumes that the onset of symptoms coincides with the onset of in-
fectiousness and that there are no inapparent cases.

The first step in assessing the SAR is to define for the disease under study the time in-
terval after the index case that would include secondary cases. The presumed beginning
of infectiousness of the index case is defined as time O for each household. Secondary
cases are those with time of onset between the end of the minimum incubation period E;
relative to the beginning of infectiousness of the index case (¢ = 0) and the end of the
maximum incubation period E; relative to the time of the maximum infectious period of
the primary case, ¢ = I. Thus, secondary cases are those occurring in the interval (Ey, I +
E»). A case with recorded onset time less than one minimum incubation period, E, after
that of the index case was presumably not infected by the index case and is called a co-
primary case. Tertiary and higher cases are those occurring after the maximum allowable
time interval for the secondary cases.

Example. For an early efficacy study of pertussis vaccines, Kendrick and Eldering
(1939) estimated the infectious period for the bacteria from studies of throat cultures,
finding that nearly everyone had a positive culture up to 21 days after onset of symptoms.
They defined a definite exposure (potentially infective contact) as living in the same
house as the index case or being indoors in another house with the index case for at least
30 minutes within I; = 21 days of onset of symptoms of the index case. The mean incu-
bation period of pertussis from two other studies was estimated to be 13 + 7.6 days and
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FIG. 27-3. Time periods for estimating the household secondary attach rate.

15.4 + 1.3 days. Based on this information, Kendrick and Eldering somewhat arbitrarily
set the minimum incubation period to £; = 10 days and the maximum incubation period
to B> = 30 days. Under the definition of definite exposure, secondary cases were those
occurring between E; = 10 and Iy + E> = 21 + 30 = 51 days after the onset of symptoms
in the index case. :

Kendrick and Eldering had a second definition for a potentially infective contact called
an indefinite exposure. Based on the observation that between 21 and 35 days after onset
of symptoms, throat cultures were less often positive, someone exposed up to [; = 35 days
after onset of symptoms in the index case was defined as an indefinite exposure. The de-
finition of potentially infectious contacts under this less specific definition also included
outdoor contacts. Under the less stringent definition of indefinite exposure, secondary
cases were those occurring between day £1 = 10 and [; + E> = 35 + 30 = 65 days after the
onset of symptoms in the index case. This example illustrates that the definition of a po-
tentially infectious contact in a study is somewhat arbitrary and should be made explicit.

The second step in assessing the SAR is to determine for each ascertained case within
the minicohort in each household whether it is a coprimary, secondary, tertiary, or higher
generation case. The estimated household SAR is the total number of secondary cases in
all households divided by the total number of at-risk susceptibles in all households, as in
equation 27-1. Coprimary cases are excluded from the denominator. Tertiary or higher
cases are excluded from the numerator but included in the denominator.

Example. The case-contact approach is used to estimate the transmission probability
of tuberculosis. Upon identification of an infectious case of tuberculosis, public health
officials locate people who have made contact with the infectious case and test them for
whether they have become infected. The pooled estimate of the proportion who have be-
come infected is an estimate of the transmission probability.

Difficulties in estimating the SAR and case-contact rates include determination of the
latent and incubation periods, ascertainment of onset times of cases, and determination
of when an exposure to infection has taken place.
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Binomial Models of Transmission Probabilities

The binomial model is often used when susceptibles make more than one potentially
infectious contact. The probability of transmission during a contact between a suscepti-
ble and an infectious person. is denoted by p. The probability of the susceptible person’s
escaping infection during the contact is ¢ = 1 — p. Suppose that a person makes » con-
tacts with an infective or with different infectives and that the probability of being in-
fected during any" contact is independent of any previous contacts. Then the probability
of escaping infection from all » potentially infective contacts is ¢" = (1 — p)". The prob-
ability of being infected after »n contacts, that is, of not escaping infection from all » con-
tacts,is 1 —¢" =1 — (1 — p)". The maximum hkellhood estimate of the transmission prob-
ability under the binomial model is

pumber of susceptibles who become infected
total number of contacts with infectives

p= [27-2]
Note the similarity between the formula for p and the one for SAR in equation 27-1.
The difference is in the denominators. In the binomial model, we count the total num-
ber of potentially infectious contacts that susceptible individuals make, while in the
SAR each susceptible person had just one potentially infectious contact with the infec-
tive. The two formulas would be the same if everyone in the binomial model made just
one potentially infectious contact. Both p and SAR are measures of the transmission
probability.

Example. A study of HIV transmission was conducted in a population of 100 steady
sexual couples. At the beginning of the study, one partner in each couple was already in-
fected and the other partner was susceptible. Twenty-five of the 100 susceptible partners
became infected during the follow-up period. The total number of sexual encounters re-
ported in the study either up until a person became infected or until the end of the study
was 1500. The maximum likelihood estimate of the transmission probability is p=
25/1500 = 0.017.-The probablhty of becoming infected after two contacts with an in-
fected person is 1 — (1 — p)? = 0.034.

It is possible to estimate the transmission probablhty even if the infection status of peo-
ple making contact with susceptibles is not known, if other information is used. For ex-
ample, an estimate of the prevalence P of infection in the pool of potential contacts might
be available. The probability of becoming infected from a contact with a partner with un-
known infection status chosen at random from a population with prevalence P is Pp.
Thus, the probability of infection after » total contacts is 1 — (1 ~ Pp)". The transmission
probability can be estimated by solving for p using information on the proportion be-
coming infected during the study, the total number of contacts, and the prevalence of n-
fection in the pool of contacts.

Sometimes information on the exact number of contacts is not available. Study subjects
might give information on the average number of contacts they each make per unit time.
From this, the expected number of contacts during the study period can be estimated. The
exact form of the binomial model that is used in an analysis depends on the data available
and on the assumptions made about the variability of infectiousness of the infectives and
the variability of susceptibility of the susceptibles (Kim and Lagakos, 1990). Even when
analysis using the binomial model becomes computationally quite demanding, the under-
lying principle remains simple. There is a probability p of transmission and a probability
g =1 — p of escaping transmission upon contact with an infective.
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Other Binomial Models

Chain binomial models are developed from the simple binomial model by assuming
that infection spreads within a population in discrete units of time, producing chains of
infection governed by the binomial probability distribution. If p is the transmission prob-
ability from an infective host to a susceptible host with a contact assumed to last one time
unit, then the number of new infections in exposed susceptibles at the end of a time unit
is assumed to follow the binomial distribution. The expected distribution of infections af-
ter several units of time can be calculated from the chained, that is, sequential, applica-
tion of the binomial model. The Reed-Frost and Greenwood models are examples of
chain binomial models. The Reed-Frost model assumes that exposure to two or more in-
fectious people at the same time are independent exposures. The probability of escaping
infection from two infectives is (1 — p)2. The Greenwood model assumes that exposure to
two or more infectious people at the same time is the equivalent to exposure to one. Un-
der this model, the probability of escaping infection from simultaneous exposure to two
infectives is 1 — p. The chain binomial models can be used to estimate the transmission
probability from data gathered on each generation of infection or from the final distrib-
ution of infections within a collection of households after an epidemic has occurred.
Abbey (1952), Bailey (1957), and Becker (1989) discuss chain binomial models.

Transmission in Small Units Within Larger Communities

In the conventional household SAR studies and the HIV partner study described above,
the houses and partnerships were assumed to be independent of each other. The suscepti-
bles were assumed to be infected only by the index case, who had somehow become in-
fected. The small units, households, or partnerships could be part of a community, however,
so that individuals can become infected either from the index case or in the community at
large. If the transmission probability or SAR is estimated without taking into account the
opportunity to become infected outside the unit under study, it will overestimate the actual
probability of becoming infected per contact. Longini and Koopman (1982) developed a
model for transmission in a community of households that takes into account both sources
of infection. A similar approach can be used in estimating HIV transmission probabilities,
where nonmonogamous partnerships can be thought of as households of size two.

BASIC REPRODUCTIVE NUMBER

A second important parameter in infectious diseases is the basic reproductive number,
Ry. Understanding R, is important for public health applications in infectious diseases.
For microparasitic diseases, such as those caused by viruses and bacteria, Ry is defined
as the expected number of new infectious hosts that one infectious host will produce dur-
ing his or her period of infectiousness in a large population that is completely suscepti-
ble. Ro does not include the new cases produced by the secondary cases, or further down
the chain. It also does not include secondary cases who do not become infectious.

Example. If Ry = 9 for measles in a population, then one person with measles intro-
duced to that population would be expected to produce nine new secondary infectious
cases before recovering, if the population were completely susceptible. If the person pro-
duced two additional cases who did not become infectious, Ro would still be 9.
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In general, for an epidemic to occur in a susceptible population, Ry must be >1. f Ry < 1,
an average case will not reproduce itself, so an epidemic will not spread. Since Ry is an
average, it is possible that a particular infectious person will produce more than one in-
fective case, even when Ry < 1, so there may be a small cluster of cases. We would not,
however, expect a self-sustaining outbreak.

For microparasitic infections, R is a compesite of three important aspects of infectious
diseases: the rate of contacts ¢, the duration of infectiousness d, and the transmission
probability per potentially infective contact p. The average number of contacts made by
an infective during the infectious period is the product of the contact rate and the dura-
tion of infectiousness—cd. The number of new infections produced by one infective dur-
mng his infectious period is the product of the number of contacts in that time interval and
the transmission probability. per contact:

5 number of transmission duration
| Ro = contacts per X probability X of = cpd .
unit time per contact infectiousness

A term could be included to account for the probability of becoming infectious after in- -
fection. . _

A value of Ry is not specific to a parasite, but toa parasxte population within a partic-
ular host population at a particular time. The contact rates in rural areas will be lower than
contact rates in urban areas, so we expect the Ro of measles to be lower in rural than in
urban areas. Ry of malaria may be high during the season of high mosquito density but
low during the season when there are few mosquitos. The Rg of HIV infection in intra-
venous drug users might be much higher than it is for HIV infection in a heterosexual
population. -

Because Ry is the number of new infectious cases per infectious case, it is a dimen-
sionless quantity. Without further information about the magnitude of the parameters
that make up Ry, we cannot conclude much about the time frame of an epidemic, the
transmissibility of the infectious agent, or the contact rate. Ry is about 9 for measles in
some populations and also about 9 for HIV infection in some populations of intra-
venous drug users. We know from other sources that measles has a high transmission
probability and short duration of infectiousness and moves much faster than HIV,
which has a low average transmission probability and longer duration of infectious-
ness. If we knew only that Rg = 9 for both, then we would know that they both could
result in major epidemics, but we would not be able to draw conclusions about the rel-
ative time frames of the two.

Indirectly transmitted diseases are those in which a parasite is transmitted between two
different host populations. An example is the vector-borne disease malaria, transmitted
from humans to mosquitos and back to humans. Another example is heterosexual trans-
mission of sexually transmitted diseases where the infection is transmitted from a man to
a woman and back to a man. Ry for indirectly transmitted diseases depends on the prod-
uct of the two components of transmission. If a woman infects on average two men and
a man infects on average three women, then one infectious case amplifies on average to
six infectious cases in the same host population.

By definition, Ro assumes that all contacts are with susceptibles. In real populations,
however, there are often people who are already immune to a parasite. Under these cir-
cumstances, the expected number of new cases produced by an infectious person is less
than Ry and is called the effective reproductive number, denoted by R. If x is the propor-
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tion of a randomly mixing, homogeneous population that is susceptible, R is the product
of Ro times the proportion x of the contacts that are with susceptibles:

R = Rox [27-3]

Example. Assume that R = 9 for measles in a population and that one-half of the popu-
lation is immune. Then, the effective reproductive number for measles is R =9 x 0.5 =
4.5. A case of measles would produce on average only 4.5 new secondary cases in this
population.

Simple Insights from R,

Ro is a complex parameter that summarizes many of the important aspects of an infec-
tious agent in a host population. It allows us to compare seemingly disparate diseases
from the viewpoint of population biology and think about the effects of public health in-
terventions. When a parasite is endemic and over time the average incidence does not
change, an infectious case produces on average one new infectious case, and R = 1. To
reduce transmission so that the parasite dies out, the average number of secondary cases
produced by one infective case needs to be <1:

R<1 [27-4]

Suppose that Ry =5 for HIV infection in a population. We would have to decrease the con-
tact rate by a factor of five to turn the tide of an epidemic. If condoms reduced the trans-
mission probability by 90%, then Ry would be reduced to 0.5 if everybody used them. If be-
fore intervention, an average case of tuberculosis is infectious for 1 year and produces eight
other cases, an intervention strategy emphasizing case-detection and treatment with antibi-
otics that reduces the period of infectiousness to 2 weeks would reduce Ry to about 0.3.

If the fraction of susceptibles is low enough, the probability that an infective host
comes in contact with a susceptible host before recovering will be very low. The parasite
will not be able to persist. If immunization confers complete and lifelong immunity in all
of the immunized individuals and a fraction f'is immunized before the age of first infec-
tion, then 1 — f'would be the maximum fraction of the population that is susceptible, dis-
regarding immunity from previous disease. Substituting 1 — f for x in the formula for R
in equation 27-3, theoretically it suffices to make

R =R(l1-f)<1, [27-5]

to eliminate transmission. The fraction that needs to be immunized to eliminate trans-
mission is

f>1-1Ro. [27-6]

A higher R, requires immunization of a higher fraction to eliminate transmission.
Example. Assume that Ry = 9 for measles in a population. Under the assumption of
random mixing, the fraction that needs to be immunized before the age of first infection
is f=1—1/Ry=1~1/9.0 = 0.89. Ry for smallpox before it was eradicated was estimated
to be 4-5. For this Ry, the proportion that would need to be immunized before the age of
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first infection would be f=1 — 1/Ry =1 — 1/5.0 = 0.80. Based on these simple calcula-
tions, we would expect it to be harder to eliminate measles than smallpox. This is prov-
ing to be the case, although other factors such as heterogeneities in contact rates and sus-
ceptibility and measles vaccine failure play important roles.

The fraction of the population that must be vaccinated to make Ro < 1 increases if the
vaccine fails or provides only partial protection in some individuals. Suppose that the
vaccine fails in some fraction 1 — 4 of the individuals who receive it, while the propor-
tion A are completely: protected. Thus, the fraction of the population protected by immu-
nization is Af, and R = Ry(1 — Af). The fraction of the population that needs to be immu-
nized to eliminate transmission is then :

1 -1/Ro
h

Example. Assume as in the above measles example that Ry =9. Suppose, however, that
there is a failure somewhere along the cold chain required to keep vaccine viable from
production to injection. Assume that the vaccine fails completely in 5% of the immu-
nized people while conferring complete and long-lasting protection in the other frac-
tion h = 0.95. The fraction fthat must be vaccinated to eliminate transmission increases
to '

f= [27-7]

_ 1-1Ro _ 0.89 _ ;
f p D05 = 094 [27-8]
If the vaccine fails in 15% of the vaccinated people, then the fraction that must be vacci-
nated is 0.89/0.85 > 1.0. With this vaccine at this failure rate, it would not be possible to
eliminate transmission even if it were possible to vaccinate everyone. :
The vaccine might not completely fail but confer only partial protection against infection,
resulting in a reduction in the transmission probability to a susceptible from p to bp, where
b is the relative susceptibility of a vaccinated susceptible person compared with an unvac-
cinated susceptible person. If a vaccinated person does becomes infected, the vaccine may
still cause a reduction in the degree or duration of infectiousness. Let m be the ratio of the
degree of infectiousness and p be the ratio of duration of infectiousness in a vaccinated in-
fective compared with an unvaccinated infective. Consider a population in which everyone
is immunized with such a partially protective vaccine that reduces infectiousness. The re-
productive number R for the infectious agent in the presence of this complex vaccine is

Re = c(bpm)(pd) = Ro(bmp). [27-9]

A vaccinated person is worth the fraction bmp, the immunologically naive equivalent, of
an unvaccinated person from the point of view of transmission. If bmp < 1/Ro, then R°
will be <1. Thus, the vaccine has to be efficacious enough to reduce the value of an im-
munologically naive susceptible below bmp = 1/Ro to prevent sustained transmission if
the agent were introduced (Halloran et al., 1994b).

Example. Suppose that a measles vaccine reduces the transmission probability to the
fraction b = 0.05 of its value in an unvaccinated person but leaves infectiousness un-
changed, sothatm=1and p=1. The protective efficacy is 0.95. If Ro = 9.0 and every-
one is vaccinated, then R° = 0.05Rq = 0.45. If measles were introduced into a population
vaccinated with this vaccine, it would not be expected to spread. If, however, b= 0.12, so
that the protective efficacy is just 0.88, then R > 1, and we would expect to see an out-
break if the virus were introduced into the fully immunized population.
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Herd immunity describes the collective immunologic status of a population of hosts, as
opposed to an individual organism, with respect to a given parasite (Anderson and May,
1982). Herd immunity of a population may be high if many people have been immunized
or have recovered from infection with immunity or may be low if most people are sus-
ceptible. The level of herd immunity has important effects on the transmission of infec-
tious agents. As herd immunity increases, R will decrease. Fine (1993) provides a review
of herd immunity.

Estimating Ry

Direct estimation of Ry is not easy (Dietz, 1993). Two indirect methods can be used
when the transmission system is assumed to be in dynamic equilibrium. The first method
is based on the concept that when the average incidence rate and prevalence of disease
are not changing, an infectious case produces on average one other infectious case, so

= 1. From the relation R = Rox = 1, the proportion susceptible at equilibrium would be

= 1/Ro. Assuming random mixing, then Ro is roughly estimated by the reciprocal of the
proportlon susceptible. '

Example. Fine and Clarkson (1982) analyzed the data available for age-specific inci-
dence and immunity. levels for measles in England and Wales since 1950. They estimated
that about 4—4.5 million individuals were susceptible, or about 9% of the population. May
(1982) estimated that this corresponds to an Ry for measles in those countries of about
1/0.09 = 11, which is similar to estimates using other methods.

A second method was derived by Dietz (1975). In the simple case in which the inci-
dence rate is assumed to be independent of age, the average age of infection, 4, is equal
to the reciprocal of the incidence rate, I ’

1
T
Assuming stationarity, the incidence rate of infection can be estimated either from case
reports or from cross-sectional, age-specific surveys of serologic prevalence in the pop-
ulation using the usual methods of estimating incidence from prevalence. If the average
life expectancy, L, in a population is known, then Ry can be estimated from the relation

A= [27-10]

Ro=L/A [27-11]

If a population is growing substantially, such as in many developing countries, then the
life-expectancy L should be replaced by the remprocal of the per capita birth rate (An-
derson and May, 1991).

Example. The higher the average age of infection, the lower the R for any given life
expectancy. The average age of measles in the United States in the 1950s was about 5-6,
while for rubella it was about 9—10. From this, we would conclude that Ry for measles
was higher than for rubella.

The average age of infection is itself of interest because intervention programs can shift
it. If many people are vaccinated, the incidence of infection will decrease, so that the av-
erage age of infection in the susceptibles will increase. Some diseases, such as mumps,
chickenpox, and rubella, are more serious if acquired at older ages. Thus, the number of
total cases could decrease due to a vaccination program at the same time that the number
of serious cases would increase. These aspects of infectious disease interventions are
studied using dynamic transmission models. Anderson and May (1991) present a com-
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pendium of information on R, and dynamic transmission models; see also Halloran et al.
(1989, 1994c).

Although Ry is a conceptually useful measure that provides a summary of several as-
pects of an infectious disease, the simple relations described above usually do not hold.
Heterogeneities in the contact rates, transmission probabilities, and duration of infec-
tiousness produce different Ry values in different subgroups. If individuals of a group of
people who live near each other are not immunized, then it is possible for transmission to
occur in that group, even when transmission has been eliminated in other segments of the
population. The contact rate can increase locally if people move into crowded conditions,
such as into college dormitories, military barracks, or refugee camps. Especially when
transmission is tenuous or near elimination, heterogeneities can play an important role in
determining whether a parasite can persist in a population.

Virulence, Ry, and the Case-Fatality Ratio

Ro can also be used to study within-host dynamics such as the interaction of infectious
agents with the immune system or to quantify evolutionary concepts. Virulence is a mea-
sure of the speed with which a parasite kills an infected host. Since Ry is a function of the
time spent in the infective state, Ry could decrease as virulence increases. If the parasite
is so highly virulent that it kills its host quickly, then Ry could be < 1, and the parasite
will die out. Viewed in this way, there is evolutionary pressure on parasites to become less
virulent and to develop a more benign relation to the host. On the other hand, in some
diseases, hosts become more infectious when they become sicker, so the transmission
probability increases at the same time virulence increases. Thus, Ry could increase as vir-
ulence increases, putting evolutionary pressure on the parasite. to increase virulencé. The
balance depends on the particular parasite. The case-fatality ratio is the probability of dy-
ing from a disease before recovering or dying of something else. As virulence increases,
the case-fatality ratio increases.

Example. Cholera is a disease that kills very quickly because the infected host be-
comes dehydrated within hours and dies. Virulence and the case-fatality ratio of untreated
cholera are very high. A simple solution of salt and sugar in water given to a person sick
with cholera will prevent death from dehydration, so that the person has time to develop
immunity and recover from the disease. Use of this oral rehydration method has dramat-
ically reduced the virulence and case-fatality ratio of cholera.

Ry in Macroparasitic Diseases

The concept of Ry comes from general population theory and refers to the expected
number of reproducing offspring that one reproducing member of the population will
produce in the absence of overcrowding. Although Ry is defined for microparasitic dis-
eases by the number of infective hosts, for larger parasites, called macroparasites, such
as worms, Ry is defined as in general population theory to be the expected number of ma-
ture female offspring that one female parasite will produce in her lifetime.

Example. The disease schistosomiasis is caused by large, sexually reproducing worms
called schistosomes that can live up to 20 years within a human host. If a female schis-
tosome worm has an Ro = 2 in a population of human hosts and an intermediate host pop-
ulation of snails, then the average female schistosome produces two mature female
worms from the thousands of eggs that it produces. Most of the eggs are thwarted on their
obligatory passage through the environment and the intermediate snail hosts, before be-
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ing able to establish themselves in another human host where they can grow into repro-
ducing adults. The two new successful worms could be in one other human host, or in
two different hosts. The Ry = 2 refers to the number of worms, not to the number of hosts,

With macroparasites, we are often more interested in the total number of parasites in
each host than in the mere prevalence of infection, because the parasite burden in a host
can be more relevant than infection per se in determining morbidity. In macroparasitic
diseases, some hosts can have very heavy infection, that is, many worms, while others
have very light infection. This pattern is called clumping of infection in wormy people.
Chemotherapy that targets wormy people could have a greater effect on transmission and
morbidity than untargeted therapy. Clumping should be taken into account when design-
ing interventions and their evaluation in helminths (Anderson and May, 1991).

INCIDENCE RATE AS A FUNCTION OF PREVALENCE AND CONTACT RATE

Besides the parameters specific to infectious diseases such as the transmission proba-
bility and Ry, the usual epidemiologic measures such as incidence rate, incidence pro-
portion, and prevalence are also used in infectious disease epidemiology. Historically, ter-
minology has differed somewhat in infectious disease epidemiology, with the terms
attack rate being used for incidence proportion and force of infection for incidence or
hazard rate. Although the same definitions and methods of estimation hold in infectious
disease epidemiology for these usual epidemiologic measures, the dependence of events
in infectious diseases results in additional intrinsic relations among the measures. Under
the assumption of simple random mixing, constant contact rate ¢, and transmission prob-
ability p, the incidence rate /(#) can be expressed as a function of the prevalence P(f) at
time # of infectious persons: " ‘

I(t) = cpP(t). [27-12]

This equation represents what Ross pointed out in 1916, namely, that the number of peo-
ple becoming affected per unit time, the incidence, depends on the number already af-
fected, the prevalence, as well as the contact rate and the transmission probability. The in-
cidence proportion in a given time period depends on the incidence rate in that period;
thus, it is also a function of the components of the transmission process.

Equation 27-12 can be used to estimate different quantities, depending on which
components have been measured. The product of the contact rate and the transmission
probability, cp, equals the more easily estimable ratio of the incidence rate to the preva-
lence of infectives, [(£)/P(f). Thus, we do not need to observe the underlying contact
process and transmission probabilities to obtain some information about their product
cp. The transmission probability can be estimated if the other three components are
measured. '

Example. In malaria, the probability that a human host becomes infected from the bite
of a mosquito containing infective stages of the parasite, that is, the transmission proba-
bility p, can be estimated from p = I(f)/cP(t). I(¢) is the estimated incidence of new
malaria infections, c is the estimated number of mosquito bites per person per unit time,
and P(¢) is the proportion of captured mosquitos with infective stages of the malaria par-
asite in their salivary glands. _

In reality, the incidence rate, contact rate, transmission probability, and prevalence may
form a complex relation that is difficult, if not impossible, to measure. It is important in
designing and analyzing studies in infectious diseases, however, to make any implicit as-
sumptions about the relation explicit. ' '
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Estimation of the transmission probability as described in the preceding sections requires
information on actual contacts between infectives and susceptibles, while the usual epi-
demiologic parameters such as incidence rate and incidence proportion do not. Halloran
and Struchiner (1995) classified the parameters as conditional and unconditional parame-
ters, depending on whether estimation is conditional on knowledge of such contacts or not.
Thus, the transmission probability is a conditional parameter, while incidence rate and in-
cidence proportion are unconditional parameters. The parameters transmission probability,
incidence rate, and incidence proportion form a hierarchy requiring decreasing amounts of
information about the transmission and contact processes (Rhodes et al., 1996)..

Comparison of the basic reproductive number, Ry = cpd, and the incidence rate, I(f) =

cpP(t), reveals the difference in points of view of the infective and susceptible hosts in
infectious diseases. Ry 1s the number of new cases that an infectious case is expected to
produce, while the incidence rate I(f) reflects the probability that a susceptible person will
‘become infected in a short unit of time. Both quantities contain the product of the con-
tact rate and the transmission probability, cp, the contact being the point at which the sus-
ceptibles and infectives meet and transmission being the fundamental event in infectious
diseases. The unit composed of the susceptible, the infective, and the contact between
them is the irreducible element in the study of transmission.

Contact Rates and Mixing Patterns

Contact patterns in a population play a central role in determining transmission and ex-
posure to infection. There are different ways to think about how individuals in popula-
tions make contacts. One is that people behave like gas molecules with the rate of con-
tacts being determined by density. If people were pressed more closely together, as'in an
urban environment, they would bump into each other more often than if they were less
densely distributed, as in a rural environment. For diseases spread through casual contact,
such as measles, mumps, or influenza, population density plays a role in determining the
value of R¢. Alternatively, contact rates can be determined by choice, such as in sexual
contacts or injection of intravenous drugs. In this case, R is determined more by social
choice. In many cases, both density and choice will play a role in determining contact
rates and mixing patterns.

Regardless of how contacts arise, the simplest assumption about the contact pattern in
a population is that of random mixing. Under this assumption, every person has an equal
chance of making contact with each other person. Consequently, every person also has an
equal chance of being exposed to infection because every person is equally likely to make
contact with any infectious person. The assumption of equal exposure to infection of peo-
ple in the comparison groups is important in many studies of interventions and risk fac-
tors affecting susceptibility, especially when based on unconditional parameters. As in
the discussion above, we denote by ¢ the constant contact rate that does not change over
time in a randomly mixing population.

Most populations do not mix randomly but have groups that mix more with their own
members than with other groups. The groups could be sexual behavior groups, different
age groups within a school, or households in a community. The contact rate of individu-
als of group j with individuals of group i is denoted by cj. In a population composed of
two mixing groups, group 1 and group 2 (Fig. 27-4), the contact pattern is described by
a mixing matrix that has the same number of rows and columns as the number of mixing
groups. The entries in the matrix represent the rate of contacts of individuals within and
between the groups. The mixing pattern of two groups is represented by the matrix:



544 INFECTIOUS DISEASE EPIDEMIOLOGY

Cl2. C22

C= [c“ 02‘} [27-13]

On the diagonals are the rates of contacts within groups, c;; and ¢;,. The off-diagonal en-
tries, ¢z and ¢y, represent the rates of contacts between the groups corresponding to that
row and column. ‘ ) _

Ro will be higher in the group with the higher contact rate, assuming that the transmis-
sion probability and duration of infectiousness are the same in both groups. If an epidemic
occurs and there is contact between the two groups, the epidemic in the group with the
higher contact rates will help drive the epidemic in the group with the lower rates. The
group with the higher Ro would then serve as a core population for transmission. A core
population is a group with a high Ry, possibly due to a high contact rate, that interacts with
a possibly much larger group with a low Ry. The interaction between the two groups helps
spread the disease in the population with the lower Ro. The existence of a core group has
consequences for intervention programs. It may be easy to reduce the average Ry for the
whole population below 1, while Ry in the core population remains above 1, so that trans-
mission will persist. In infectious diseases, the chain is only as weak as its strongest link.

Example. Hethcote and Yorke (1984) examined different strategies for reducing gon-
orrhea, taking into account professional sex workers who acted as a core group and con-
tacts within the general population. They found that an intervention program generally
needs to be targeted at the subpopulation with the higher Ro, in this case, the core popu-
lation of sex workers, to have the greatest effect. Alternatively, a program could try to in-
terrupt the contacts between the two groups.

Unfortunately, like much else in infectious diseases, these contact patterns are often dif-
ficult to determine and usually are not measured (Ghani et al., 1997). When conducting
studies in infectious diseases where transmission plays a role, it is important to formulate
explicitly the underlying assumptions that are being made with respect to contact patterns
and exposure to infection. Since groups with different contact rates and mixing patterns
could have different exposure to infection, consideration of the contact patterns could be

Mixing Pattem: Two Groups

Ci2
contact rate
group 1 with group 2

Cyy .
contact rate
group 2 with group 1

Cyq
contact rate
within group 1
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contact rate
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Mixing Matrix

Cc,s C
C____ 11 12
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FIG. 27-4. Mixing patterns of two groups.
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important for interpreting measures of effect. Failure to take into account unequal exposure
to infection in the groups being compared can produce biased estimates of effect.

Dynamic Epidemic Process in a Closed Population

We tie the concepts of epidemiology, population biology, and transmission together
with a simple example of an epidemic process in a closed population. Consider an in-
fectious disease in which individuals can go through three states (Fig. 27-5a). They
start out susceptible, X, then become infected and infectious, 7, after which they re-
cover with immunity, Z. Models of this type of infection process are called SIR models
for susceptible, infected, recovered. We opt for the other commonly used XYZ notation
because I is used throughout this book for incidence rate. If these are the only three
states possible, then each person in a population of N individuals is in one of these
three 'states, where X{(7) is the number of susceptible people at time t, Y(?) is the num-
ber of infectives, and Z(¢) is the number of immunes. This simple model ignores the la-
tent ahd incubation periods and assumes that infection, disease, and infectiousness oc-
cur simultaneously. This model could be a simplified representation of measles,
mumps, rubella, or chickenpox. , : . ~ :

If the population is closed, then there are no births, immigration, deaths, or emigration.
Therefore, a closed population is analogous to a closed cohort of people in an epidemio-
logic study. In a typical cohort study, we would not necessarily be concerned with how
the individual people interact. In a study of an infectious disease, however, the underly-
ing contact and transmission processes are important, so we need to think about these
processes in our study. We consider a closed population of N initially susceptible people
who are assumed to be mixing randomly with contact rate c. Thus, initially everyone in
the closed population is in state X at time ¢ = 0.

Suppose a parasite such as a measles virus is introduced into this population, so that one
person enters the infectious state Y. If Ry > 1, the epidemic is expected to spread. The
process in a closed population is illustrated in the two top graphs in Fig. 27-6. The infec-

a. Y
cp v
closed N
population X IEEEm— Y — Z
susc incidence inf recovery | immune
b cp _Y- v
. birth N
open — ] X . Y SR—— Z
popuiation susc incidence inf recovery immune
l death ‘ death ‘ death

FIG. 27-5. Transmission model for an infectious disease in a host population. The three
compartments represent susceptibie (X), infective (Y), and immune (Z) hosts attime t. Th_e total
host population is of size N = X + Y + Z Susceptible hosts become infected thh an mmden_ce
rate (force of infection) of cpY/N, where c is the contact rate, p is the transmission probability,
and Y/N is the prevalence of infective hosts at time ¢ The rate of recovery is v. (@) closed
population; (b) open population. Arrows represent transitions in and out of compartments.
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tion spreads from the first infective to the average number Ry of susceptibles, depending on
the rate of contact c, the transmission probability p, and how long the person is infectious
d. If people recover at the rate v, then they are infectious on average for the time period d
= 1/v. The first infective eventually recovers with immunity into state Z, while the infection
spreads from those people he or she infected to more susceptibles. The number of infectives
Y initially increases. As the epidemic spreads, the number of susceptibles X decreases, while
the number of people with immunity in Z begins to increase. Incidence and prevalence of
infection will increase until the number of susceptibles available becomes a limiting factor.
Then the number of new cases and prevalence of infectives begin to decrease until the par-
asite dies out and no people are left in the infective compartment Y. A parasite in a closed
cohort where people recover with long-lasting immunity will inevitably die out, as in the
top graphs in Fig. 27-6, because the key to parasite persistence in a host population is a con-
tinuous supply of susceptibles. The susceptibles can be produced either by births, immi-
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FIG. 27-6. Comparison of the spread of an infectious disease in a closed or open population.
The infectious agent is introduced into a population of N susceptibles. Susceptible peopie
become infected and infectious, then develop immunity. Top left: Epidemic in a closed
population, low Ro. The epidemic dies out before all susceptibles become infected. Top right:
Epidemic in a closed population, higher Ro. Everyone becomes infected during the epidemic.
There are no infectives left as the epidemic dies out. Bottom left: Epidemic followed by
endemic persistence in an open population, low Ro. The infectious agent does not die out due
to the supply of new susceptibles. Prevalence of susceptibles, infectives, and immune people
is in dynamic equilibrium. The number of new incident cases is steady. Bottom right: Epidemic
followed by endemic persistence in an open population, high Ro.
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gration into the population, recovery without immunity, or waning of immunity after it is
acquired. In this example, however, no new susceptibles are produced.

The dynamics of the epidemic are described by three differential or difference equa-
tions that express the rate of change of the number of people in each of the three states.
The rate at which people leave the susceptible compartment X and become infected is
simply the incidence rate. Prevalence of infectives at time ¢, P(¢), is the number of infec-

tious people ¥(¢) divided by the size of the population N, or Y(z)/N. The formula for inci-
dence as a function of prevalence in the epidemiic is

I(t). = cpP(t) = cpZ]%—)-. [27-14]

The change in the number of susceptibles, the population-at-risk, AX(?), per small inter-
val of time At at time ¢ equals the incidence rate I(?) times the size of the population-at-
risk X(?). The change in the number of infectives, AY(?), is the difference between the
number of new infections and the number of infectives developing immunity. The num-
ber of infectives developing immunity in that time interval is the change in the number
of immunes AZ(?). The three difference equations for the epidemic model are then

AX(®) _
At

%Q = ¢p %QX(t) - vY(1),

AZ(@) _
At = vY(?).

We can associate aspects of the epidemic process with the usual epidemiologic mea-
sures. An estimate of the incidence rate /(#) estimates cpY(£)/N. A cross-sectional study to
estimate prevalence P(f) of current infection would yield an estimate of Y(£)/N. The num-
ber of new infections in an interval of time estimates [cp Y(£)/N1X(?)At, the incidence rate
times the number at risk for the event times the time interval. The epidemic process of a
disease producing long-lasting immunity in a closed population is always either increas-
ing or decreasing. An important consequence for conducting studies in epidemics in
closed populations is that there is no stationary state of the disease process. Thus, epi-
demiologic methods, study designs, or analytic methods that assume statlonanty of the
disease process are not applicable under epidemic conditions.

The epidemic process also depends on the population biology. Since Ry is the product
of the contact rate, the transmission probability, and the duration of infectiousness, in
this model, Ry = cp/v. The expected number of new cases per infective host decreases
from Ro to R = Rox, where x = X(£)/N, the proportion still susceptible at time . The epi-
demic peaks and begins to decrease when R < 1, so that X(£)/N < 1/R,, that is, when the
proportion of the population still susceptible becomes less than the reciprocal of the ba-
sic reproductive number. The greater Ro, the fewer susceptibles will be left when the epi-
demic peaks (compare the two top graphs in Fig. 27-6). Not all the susceptibles need to
become infected before the parasite dies out. The higher Ry is, the fewer susceptibles
will be left at the end of the epidemic. Thus, the incidence proportion after an epidemic
provides information on Ry. If an intervention reduced some aspect of Ry, then the in-
tervention would result in the epidemic peaking when a higher proportion of the popu-
lation was still susceptible, and fewer people would become infected before the epi-
demic died out.

~1)x0) = ~p T x0),
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Transmission in an Open Population and Dynamic Cohort

If the population is open so that birth or immigration and death or emigration can take
place, then the susceptibles form a dynamic cohort with the population-at-risk changing
over time (see Fig. 27-5b). This open population with the dynamic cohort at risk for in-
fection is amenable to many of the study designs standardly used in dynamic cohorts. In
the open population, if the replenishment of susceptibles is fast enough compared with
the dynamics of the parasite, then the parasite does not necessarily die out, but can per-
sist and become endemic (Fig. 27-6, lower two graphs). The parasite invades the popula-
tion, establishes itself, and persists. In the lower two graphs of Fig. 27-6, the prevalence
of infectives and number of new cases remain >0, indicating that the infection persists in
the population. The:prevalence of susceptible, infected, and immune people at equilib-
rium will depend on Ro (compare the two lower graphs in Fig. 27-6).

‘When a disease is first introduced into a population, the dynamics will resemble an epi-
demic and are not stationary. As stated in the previous section, epidemiologic methods
that assume stationarity of the disease process cannot be used during the epidemic phase.
If the parasite has achieved a dynamic equilibrium, however, then some relations might
be applicable. In choosing study designs and methods of analysis, we need to consider
whether the dynamics of transmission are at equilibrium or are changing over time.

We can also define a fixed cohort of susceptibles within a dynamic population and fol-
low them just as in a usual fixed cohort study. An important difference in infectious dis-
eases, however, is that the disease process outside the cohort under study can affect inci-
dence within the cohort, so it is important to think about how the fixed cohort interacts
within itself and with the population at large. What we will observe if viewing only the
study cohort of susceptibles is an epidemic within the cohort. If the contacts are pre-
dominantly with people outside the cobort, the prevalence of infection in the contacts will
be similar to the population at large. This value may be changing rapidly over time if there
is an epidemic in the larger population, or it may be fairly constant if prevalence is not
changing rapidly. If the contacts are predominantly with other members of the initially

susceptible study cohort, then initially there will be few infectious contacts, but the num-
ber of infectious contacts will increase as'the epidemic within the fixed cohort spreads as
in the epidemic process described above.

Recurrent Infections

In many infectious diseases, people can have recurrent infections. This possibility has
important implications both for the dynamics of disease and for study design. Regarding
dynamics, if people can have recurrent infections, then the pool of susceptibles can be re-
plenished by the people recovering. In this case, the parasite might persist in closed pop-
ulations. In the design and analysis of recurrent infections, methods allowing repeated
outcomes in the same person need to be employed.

Example. In this example, the concepts of incidence, dynamics, and prevalence are
tied together. Two investigators who have just conducted separate studies of gonorrhea in
a heterosexual population of men and women come t0 different conclusions. The first in-
vestigator conducted a study in clinics using a sound sampling scheme with good ascer-
tainment, found that the incidence rate of gonorrhea is much higher in men than women,
and so concluded that gonorrhea is a greater problem in men than women. The second in-
vestigator conducted a population-based study that was also well designed, found that the
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prevalence of gonorrhea is much higher in women than in men, and so concluded that the
problem is greater in women. How do we resolve this paradox?

Assume that gonorrhea transmission has been fairly constant in this population and
thus is at equilibrium. Women can be infected with gonorrhea for a long time before they
develop symptoms, whereas men develop symptoms quickly and go for treatment. Thus,
the duration of infectiousness in men is much shorter than in women. Generally, the
transmission probability from females to males is lower than that from males to females;
however, to make this point as simply as possible, we assume here that they are equal. As-
sume that the population has an equal number of men and women, that the rate of new
partners (contact rate) is the same in both, and that men and women mix randomly with
the opposite sex.

Prevalence of infection in the women is higher than in'men partly because the duration is
longer; so there are a greater number of susceptible men than women who are at risk of be-
coming new cases. The susceptible men make the same number of contacts and have the
same transmission probability as the women, but their contact pool, the women, has a
higher prevalence, so the incidence rate is higher in the men. The combined effect in the
men of higher incidence rate and greater proportion susceptible results in a higher rate of
new cases in men than in women. If we conducted a study in a clinic based on incidence
rate or number of new cases, we would conclude that the problem was more serious in men.

If we conducted a prevalence study, we might think the problem mainly was in women.
The important point is that they are related through the dynamic process, and under-
standing the relation resolves the paradox.

If we can reduce prevalence in the women, it will reduce the incidence rate and, con-
sequently, prevalence in the men. This in turn will reduce the incidence rate in women
and, consequently, the prevalence in women. The dependence of events in infectious dis-
eases results in interventions having greater overall effects than would be expected from
just the direct effects in the individuals receiving the intervention.

MEASURES OF EFFECT

The different kinds of effects in infectious diseases require more measures of effect
than in noninfectious diseases. In addition to the usual effect measures of epidemiology,
such as incidence rate ratio and incidence proportion ratio, the transmission probability
ratio is an effect measure specific to infectious disease epidemiology. As described
above, the former are unconditional effect measures, while the transmission probability
ratio is a conditional effect measure because it conditions the contact between infective
and susceptible. The choice of parameter and the choice of comparison populations in a
study depend on whether we are interested in estimating changes in susceptibility or in-
fectiousness, conditional or unconditional effects, or direct, indirect, or overall effects, as
is discussed below (Halloran et al., 1997).

Transmission Probability Ratio

The transmission probability ratio (TPR) is a measure of the relative risk of transmis-
sion from infectives to susceptibles during a contact. For any given type of contact and
infectious agent, we can estimate the effect of a covariate on susceptibility, infectious-
ness, or their combination by our choice of comparison pairs in the TPR. We can also es-
timate the TPR of differing types of contacts, infectious agents, routes of infection, or
strains of an infectious agent.
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The interpretation of these estimates is that the vaccine reduces the susceptibility by
82% and mnfectiousness by 41% and the combined reduction in susceptibility and infec-
tiousness is 89%. Comparing these values with the discussion of the basic reproductive
number K¢ under partially protective vaccines, the ratio used to estimate VEs estimates
the parameter b, and, given the definition of household SAR, the ratio used to estimate
VE; estimates the parameter mp. The ratio used to estimate VEr is closely related to bmp,
the fraction of an immunologically naive equivalent that a vaccinated susceptible person
contributes to the basic reproductive number.

Conditional Versus Unconditional Measures

The choice between conditional and unconditional measures of effect in designing
studies is important. Although estimating conditional parameters such as transmission
probabilities requires more information and is more difficult than estimating uncondi-
tional parameters such as incidence rates or incidence proportions, studies based on the
transmission probabilities have some advantages. First, they are less easily biased by un-
measured, unequal exposure to infection than studies based on unconditional parameters.
As early as 1915, Greenwood and Yule pointed out that to measure the effect of some risk
factor on susceptibility to infection, we need equal exposure to infection in the compari-
son groups. When estimating the effect of a covariate on susceptibility using the trans-
mission probability, we control for exposure to infection by taking into account the ac-
tual contacts with infectives. It also has a more obvious biologic interpretation. Second,
relative infectiousness can only be estimated from the relative transmission probabilities
and cannot be estimated from unconditional parameters. Thus, studies that do not gather
information on contacts between infectives and susceptibles cannot in general be used to
estimate the effects of covariates or interventions on infectiousness.

Example. Suppose we conduct a study of the efficacy of an HIV vaccine in which we
collect information on contacts between infectives and susceptibles. Assume that the vac-
cine has no effect on infectiousness and that the transmission probability to an unvacci-
nated person is estimated to be pp and to a vaccinated person is estimated to be p1. Then
VE, = 1 — pi/po. If we estimated p1 = 0.2po, then we would estimate the efficacy of the
vaccine in reducing susceptibility based on the transmission probabilities to be VE, = 1
—-0.20 =0.80.

Alternatively, we could choose to use an unconditional parameter and estimate vaccine
efficacy, VEig, from the incidence rate of the vaccinated, /1(¢), compared with the un-
vaccinated group, Io(¢). For this, we need only the time of each infection and the person-
time at risk. Recall the formula for incidence as a function of the contact rate, transmis-
sion probability, and prevalence of infectives is I(f) = cpP(?). If the study is randomized
and blinded, then the contact rates and prevalence of infection in the contacts i the two
groups might be assumed to be equal. Assuming furthermore that they are simple con-
stants, then
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Suppose that there are two types of infectives and susceptibles making a specified type
of contact. Then there are four transmission probabilities corresponding to the possible
combinations of pairs of infectives and susceptibles. For example, if we are studying the
transmission probabilities in a population of vaccinated and unvaccinated people, the in-
fectious person in a contact could be either vaccinated or unvaccinated, and the suscepti-
ble person could be either vaccinated or unvaccinated. If we denote being vaccinated by
1 and being unvaccinated by 0, we can distinguish four transmission probabilities: Poo,
P10, po1,and py1, where, for example, po; denotes the transmission probability from a vac-
cinated infective to an unvaccinated susceptible. We estimate the effect of the vaccine in
reducing susceptibility by the ratio of the transmission probability from unvaccinated in-
fectives to vaccinated susceptibles, p1o, compared with the transmission probability from
unvaccinated infectives to unvaccinated susceptibles, pgo. To estimate the effect of the
vaccine on reducing infectiousness, we compare the transmission probabilities from vac-
cinated and unvaccinated infectives to the unvaccinated susceptibles, po; and poo, respec-
tively. The combined effect of the vaccine on reducing susceptibility and infectiousness
is estimated by comparing the transmission probability when both people in the contact
are vaccinated, p1j, to the transmission probability when both people are unvaccinated,

poo. The three TPRs of interest are ' :

relative susceptibility: TPRs = E&,
Poo

relative infectiousness: TPR; = po [27-15]

>

Poo

combined effect: TPRy = 2L
poo

Analogously, we could compare the transmission probability of tuberculosis in Cau-
casians (c) compared with African Americans (a) or between the two groups, with es-
timates of pec, Pea, Pac, and paa, by defining the appropriate pairs of transmission prob-
ability ratios. We can compare the male-male, male-female, female—male, and
female—female probability of transmission of HIV from the ratios of estimates of pomm,
Dry; Py, and pg.

The excess or prevented transmission probability fraction in the exposed is a causal pa-
rameter of interest specific to infectious diseases. If the TPR is >1, then the excess trans-
mission probability fraction is TPR — 1. If the TPR is <1, then the prevented transmission
probability fraction in one group compared with the other is 1 — TPR.

Example. Vaccine efficacy is usually estimated by 1 — RR, where RR is some measure
of relative risk. It thus has the form of the prevented fraction in the exposed. When the
vaccine efficacy estimate is based on the transmission probability, VE = 1 — TPR, it is an
example of the prevented transmission probability fraction in the exposed.

Example. As described above, the household secondary attack rate (SAR) is an esti-
mator of the transmission probability that is sometimes used to measure vaccine efficacy.
Suppose in a study of the efficacy of a pertussis vaccine that the household SARs from
an_unvaccinated case to unvaccinated and vaccinated susceptibles were estimated to be

AR oo = 0.85 and STA\Rm = (.15, respectively, and from a vaccinated case to unvacci-
nated and vaccinated susceptibles were o1 = 0.50 and SAR; = 0.09, respectively.
Then the efficacy of the vaccine in reducing susceptibility, infectiousness, and combined
effects on both is estimated by
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VER = 1-00) = _@PO) . PL_ g
, Io(?) cpoP(t) po

In this case of equal exposure to infection, as well as simple constants, VERr approxi-
mately equals VE,. This is not generally the case, even when exposure to infection is
equal in the two groups because generally ¢, p, and P() are not simple constants and
therefore do not cancel. This simple case is used to illustrate the relation of the condi-
tional to unconditional effect measures. The interpretation of the estimated effect would
generally depend on the choice of parameter.

“The unconditional effect measures can be easily biased by unequal exposure to infec-
tion. Continuing the example of the HIV vaccine trial, assume people know whether they
are in the vaccinated or control group. Suppose that the people in the vaccine group be-
lieve themselves 'to be well protected, so they increase their contact rate and it becomes
four times higher than in the unvaccinated group, that is, ¢1 = 4c¢o. You, however, do not
know this because you did not include collection of information on contact rates, or at
Jeast change in contact rates, in your study design. The expected estimate of vaccine ef-
ficacy under this situation would be

VER = 1- Li(t) =1- 6121P(l‘! =1— 460(0.2020) = 0.20
Io(t) copo P(%) Copo '

The estimated efficacy of 0.20 would underestimate the actual effect of 0.80 of the vac-
cine in reducing susceptibility.

Suppose now that the contact rate is the same in the two groups but that the vaccinated
group has become incautious about their choice of partners. Assume that the prevalence
of infection in the partner pool of the vaccinated group is twice as high as the prevalence
of infection in the partner pool of the unvaccinated group. Thus, Pi(f) =2Py(t). The ex-
pected estimate of vaccine efficacy under this situation would be ‘

- __{1_(5)_ - cprPi(t) (0.20p0)2Py(t) _
VEr = 1 Io(®) " cpoPu(t) PoPo?) 060

This again underestimates the effect of the vaccine on susceptibility.

The combined effect of the change in exposure to infection and the biologic protective
effect of the vaccine is an important public health measure of interest, since an increase in
exposure could outweigh the protective efficacy of the vaccine. In conducting studies, how-
ever, we generally want to differentiate covariate effects on susceptibility from covariate ef-
fects on exposure to infection. In the design and analysis of a study, it is therefore impor-
tant to distinguish risk factors for susceptibility from risk factors for exposure to infection.

Improvement in estimates of covariate effects on susceptibility based on parameters not
accounting for actual exposure can be achieved by stratifying according to some surro-
gate measure or risk factor for exposure to infection. For instance, children in a vaccine
study may be stratified according to whether they attend day school or stay at home. To
stratify by surrogates or risk factors for exposure is not the same as conditioning on ac-
tual contacts with infectives, however.

Case-control studies in infectious diseases need to satisfy the same assumptions as
case-control studies in noninfectious diseases. The assumptions underlying many types
of case-control studies may, however, be dramatically violated in studies of infectious dis-
eases. Infectious diseases are often not rare, and stationarity assumptions commonly do
not apply (Struchiner et al., 1990). Thus, the underlying assumptions should be examined
closely for their applicability. Unequal exposure to infection could also be a practically
important factor. ' '
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Example. In a case-control study of the bacille Calmette-Guérin (BCG) vaccine
against leprosy by Muliyil et al. (1991), exposure to an infectious case within the house-
hold was much more strongly associated with the development of leprosy [odds ratio
(OR) = 11.74; 95% confidence interval (CI): 3.97-34.71] than was BCG vaccination (OR
= 0.80; 95% CI: 0.59-1.10). Unequal exposure to infection that was not taken into ac-
count could easily have biased the estimated effect of BCG vaccine.

A nonrandomized intervention could even exacerbate an imbalance in exposure to in-
fection between vaccinated and unvaccinated groups, so that the bias in the estimate be-
comes worse due to indirect effects of intervention. For example, consider an observa-
tional study done in a population in which people living in low-transmission areas were
those who tended to get vaccinated. In this case, the lower exposure to infection in the
vaccinated group, if not taken into account, would produce an overestimate of vaccine ef-
ficacy. The bias in the vaccine efficacy estimate could be even further increased by the
localized decrease in transmission produced by vaccination. Since this increased bias re-
sults.from the indirect effects of the intervention due to the dependence of events in in-
fectious diseases, this bias is called dependent confounding.

Exposure and Contact Efficacy

An intervention could alter the contact rates or contact pattern among persons receiving
the intervention or in a population receiving the intervention program. Contact rate efficacy
is the relative change in the contact rates due to an intervention program. Exposure or be-
havior efficacy is the relative increase or decrease in exposure to infection in the person re-
ceiving the intervention, or the relative change in the rate of infection or disease due to the
change in exposure to the infectious agent, depending on the outcome measure chosen
(Halloran et al., 1994a). The change in exposure to infection can occur in intervention stud-
ies either as the primary goal of the intervention or secondary to belief in the prophylactic
efficacy of a measure. In the above example of an HIV vaccine study, the vaccine had the
effect of increasing the rate of contacts in the vaccinated group by a factor of four.

STUDY DESIGNS FOR DEPENDENT HAPPENINGS

In the preceding discussion, we were interested in estimating effects of covariates or in-
terventions on susceptibility, infectiousness, or some aspect of the contacts and contact
process. These effects are defined for individuals or pairs of individuals. In addition,
however, we might want to estimate the indirect, total, or overall effects of an interven-
tion program in a population. Indirect effects are benefits or detriments from an inter-
vention program in a population to individuals not directly receiving the intervention,
compared to the situation in which the population had not had the intervention program.
An example would be a reduction in incidence in unvaccinated people due to widespread
vaccination in a population. Total effects are the combined direct effect in individuals ac-
tually receiving the intervention and the benefits due to the indirect effects of the inter-
vention program as a whole. An example would be the reduction in incidence in vacci-
nated people due to widespread vaccination in a population. The overall effect of an
intervention program is the effect on the population as a whole, including both those re-
ceiving and those not receiving the intervention. An example would be the overall re-
duction in incidence produced by a vaccination program. Some types of interventions,
such as environmental interventions, have only indirect or overall effects, since individ-
uals do not receive the intervention.
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Although outcomes will still be measured in individuals, indirect, total, and overall ef-
fects are defined for the distribution of the intervention in the whole population, so the
actual unit of interest is the population. Common to these effects is the need to imagine
a population A that received the intervention program and another population B that did
not receive the intervention program. The different kinds of effects are measured by
choosing different subpopulations from A to compare with population B. For indirect ef-
fects, the subpopulation in A composed of individuals not receiving the intervention is
compared with population B. To measure total effects, the subpopulation in A composed
of individuals receiving the intervention is compared to population B. For the overall
public health benefits, the entire population A is the population of interest, compared
with B. The comparison of these different subgroups from population A to population B
are designated study designs IIA, IIB, and IH, respectively. Included here for complete-
ness, study design I measures direct effects with unconditional parameters and compares
people receiving the intervention with people not receiving the intervention within the
same population A. Struchiner et al. (1990) and Halloran and Struchiner (1991, 1995)
discuss the study designs for dependent happenings, including difficulties of causal in-
ference. These study designs face the same problems as study designs in noninfectious
diseases that use separate populations as comparisons, such as ecologic studies or stud-
ies using historical controls.

Owing to the indirect effects of infectious disease interventions, to measure the excess
or prevented number of cases in the exposed, the comparison needs to be made between
the incidence proportion in the vaccinated group (population A) and what the incidence
proportion would have been in the unvaccinated group if no vaccination had taken place
(population B). If the comparison is made between the number of cases in the vaccinated
and the unvaccinated groups in the same population, as would be usual in noninfectious
diseases, both groups will have experienced a reduction in incidence. Thus, the prevented
fraction in the exposed (vaccinated) times the number of people exposed (vaccinated)
will not yield a good estimate of the number of cases that were prevented by the vaccine.
The comparison figure in population A, the number of cases in the unvaccinated group,
does not represent the number of cases that would have occurred in the unvaccinated pop-
ulation had the vaccination program not taken place (population B). It is often not possi-
ble to know what the incidence proportion would have been in the absence of the inter-
vention program. If estimates of the prevented fraction or number of cases prevented are
made under these circumstances, it is important to note that they were calculated ignor-
ing possible indirect effects. '

SUMMARY

Because of the fundamental role of transmission of the infectious agent and dependent
happenings, epidemiologic measures of interest in infectious disease epidemiology in-
clude the transmission probability, the contact rate, infectiousness, and the basic repro-
ductive number (Rp), as well as direct and indirect effect measures. Measures such as the
transmission probability that condition on contact between infectives and susceptibles are
called conditional parameters, while those that do not, such as incidence rate and inci-
dence proportion, are unconditional measures. The incidence rate is a function of the
contact rate, the transmission probability, and the prevalence of infectives in the popula-
tion. The dynamics of infection within a population need to be taken into account in the
design and interpretation of studies. It is important to distinguish risk factors for suscep-
tibility from risk factors for exposure to infection. Changes in contact rates and exposure
efficacy are additional measures of interest.



