
METHODS

Mathematical modeling and the epidemiological research process

Mikayla C. Chubb • Kathryn H. Jacobsen

Received: 15 May 2009 / Accepted: 7 October 2009 / Published online: 27 October 2009

� Springer Science+Business Media B.V. 2009

Abstract The authors of this paper advocate for the

expanded use of mathematical models in epidemiology and

provide an overview of the principles of mathematical

modeling. Mathematical models can be used throughout

the epidemiological research process. Initially they may

help to refine study questions by visually expressing

complex systems, directing literature searches, and identi-

fying sensitive variables. In the study design phase, models

can be used to test sampling strategies, to estimate sample

size and power, and to predict outcomes for studies

impractical due to time or ethical considerations. Once data

are collected, models can assist in the interpretation of

results, the exploration of causal pathways, and the com-

bined analysis of data from multiple sources. Finally,

models are commonly used in the process of applying

research findings to public health practice by estimating

population risk, predicting the effects of interventions, and

contributing to the evaluation of ongoing programs.

Mathematical modeling has the potential to make signifi-

cant contributions to the field of epidemiology by

enhancing the research process, serving as a tool for

communicating findings to policymakers, and fostering

interdisciplinary collaboration.

Keywords Mathematical model � Epidemiology �
Susceptible-infectious-removed (SIR) model

Introduction

Many epidemiologists may think that statistical regression

is the only modeling technique available for the epidemi-

ologist’s toolkit, but statistical models are only one of

several types of analytic models that are valuable to the

discipline. Spatial models make use of geographic infor-

mation systems; ecological models explain population

dynamics; physiological models describe cellular func-

tions; and forecasting, simulation, and cost-benefit analyses

enhance public policy decision-making. In each of these

cases, models further our understanding of how social,

biological, and environmental processes impact health and

disease in populations.

Mathematical modeling is a set of techniques, tools, and

equations that can be tailored to particular disciplines. In

epidemiology, mathematical models usually define inter-

actions between individuals or populations and other

individuals, populations, or environments. By defining the

rules that describe these interactions and translating those

rules into equations, a complex set of processes can be

broken down into components and quantified. The model

can then be used to explore relationships in the modeled

population, to test the impact of changed rules on the

system and its components, and to examine the outcomes

of various events that might have an effect on a population.

Despite these many potential uses, mathematical models

are, at present, used infrequently by epidemiologists.

However, modeling has already made significant contri-

butions to the health sciences (including both clinical

medicine and public health) and related disciplines,

including biology, mathematics, statistics, bioinformatics,

and other fields [1]. A summary of some of these areas of

research is highlighted in Fig. 1. An increased familiarity

with the many ways that mathematical models can be used
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in epidemiological research will allow models to be used

more extensively and correctly, to be accessible to a

broader range of epidemiologists, and to receive more

critical examination. This paper describes the great variety

of uses for mathematical models within the field of epi-

demiology and provides an overview of the methods of

modeling.

The epidemiological research process can be considered

to have four key steps (Fig. 2): (1) identifying study

questions, (2) designing studies and collecting data, (3)

analyzing data, and (4) applying research findings to public

health. The mathematical modeling process follows four

corresponding steps: (1) selecting key components for the

model, (2) identifying and validating the inputs that will go

into the model, (3) running the model, and (4) interpreting

outputs and explaining the applications of the model

results. In the following four sections, we describe the

applications of models to epidemiology and introduce

some of the principles and techniques of modeling. Sus-

ceptible-infectious-removed (SIR) models, commonly used

in infectious disease epidemiology to describe infection

transmission dynamics, are used as a primary example, and

additional model-based studies from many epidemiological

disciplines are provided as supplemental illustrations.

Identifying study questions

The first step in any research project is to identify the

questions that will be explored. For new studies, this may

involve conducting a community needs assessment. For

ongoing projects, this may take the form of a program

evaluation in which several possible next steps that could

be implemented are evaluated. For all studies, this step

typically involves consulting the existing literature to

identify what topics have previously been explored and to

catalogue the gaps that remain to be filled. Some

researchers find it helpful to create a simple sketch of the

populations of interest, the exposures that will be exam-

ined, the relationships between these populations and/or

exposures, and possible causal pathways for disease pro-

cesses. This type of visual expression of what is and is not

understood about a complex system can be a first step

toward building a mathematical model.

For example, infection transmission dynamics can be

represented using an SIR model such as the one shown in

Fig. 3. SIR models are among the most commonly used
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models in epidemiology, and serve as a good introduction

to the modeling process. In this simple model, every

individual in a population is assigned to one of the three

compartments: S (susceptible) for individuals at risk of

infection, I (infected/infectious) for individuals who are

currently infected, or R (recovered/removed) for individ-

uals who have recovered from the infection and have

immunity.

Realism can be added to the model by making it more

complex (Fig. 4). If an SIR model describes changes that

would be expected to occur in a population over decades or

longer time periods, realism can be added by building

population dynamics into the model so that susceptible

individuals are ‘‘born’’ into the population and older adults

‘‘die’’ and are removed from the population. (One of the

advantages of modeling is the ability to ‘‘observe’’ several

generations’ worth of data in mere minutes.) The death rate

might be higher for individuals in box I, and that increased

risk could be represented by an extra arrow out of the box

for death due to infection. Other arrows, which represent

the flow of individuals from one compartmental classifi-

cation to another or flow into a population due to birth or

out of a population due to death, could represent public

health interventions, such as a new vaccine allowing

individuals to move directly from the S box to the R box.

Additional compartments could be added to represent

age groups, sex groups, income groups, or other exposure

categories. For example, an SIR model with two age

groups, child and adult, would need six compartments: S, I,

and R boxes for children and S, I, and R boxes for adults.

More complex models might include separate boxes for

males and females, genetic characteristics, behavioral risk

factors, or other exposures, and might require hundreds of

compartments. If the infection being studied is vector-

borne, the model can incorporate information about the

insect vector, the life cycle of the pathogen, and human

behavior and biology [2, 3]. If the disease of interest is a

chronic condition, a model can incorporate information

about the progression of disease [4]. Multiple exposures

and multiple outcomes can be included in a model. For

example, a model of the impacts of various aspects of

traffic—such as traffic volume, traffic speed, the presence

of safe walking and bicycling zones, and amount of vehicle

emissions—can investigate a variety of health outcomes,

including respiratory and cardiovascular health, osteopo-

rosis, mental health, and injuries [5].

Selecting the components that will be included in a

model requires seeking a balance between simplicity and

complexity. A model that is too simple—one that ignores

critical components or relationships—will not clarify what

happens in the real world. A model that is too complex is

likely to be inaccurate due to the impossibility or imprac-

ticality of acquiring sufficiently detailed input data for a

large number of compartments and parameters.

Whether or not a researcher intends to build and test a

formal mathematical model, this kind of sketch—and this

sort of ‘‘systems thinking’’ [6]—can clarify the relation-

ships that the researcher wants to explore. This, in turn,

may contribute to the framing of study questions, the

assessment of the components and interactions that may

influence a system, and the selection of variables that will

be measured.

Designing studies

The second step in the research process is to design studies

that will collect valid data. Models can contribute to the

planning of a field study by assisting in the selection of a

sampling strategy—for example, models may identify

certain population groups that should be preferentially

recruited based on demographic characteristics or exposure

history—and in the estimation of the required sample size

and study duration. Models also help to clarify the

assumptions that are built into a study’s design, such as the

assumption that infection confers long-term immunity or

the assumption that patients with chronic diseases are fully

compliant with treatment regimens. There is a feedback

loop between field studies and models: data from field

studies are used to create models that represent the real

world, and models provide information about how to best

measure real-life variables.

To understand this symbiotic relationship, one must

understand the process for identifying and validating the

inputs that will go into the model. For SIR models, this step

involves quantifying the proportion of the population

located in each compartment in a model and assigning
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values to the rates of flow between compartments. The

arrows on Figs. 3 and 4 show the flow of individuals (or the

flow of a proportion of the population in each compart-

ment) from S to I and from I to R over time. These rates are

often represented using Greek letters, such as lambda (k)

for the infection rate and rho (q) for the recovery rate.

When possible, the values for parameters like k and q are

estimated from real-life data, although sometimes they

must be merely educated guesses. Clearly explaining the

source of these values and how closely they estimate real-

life values is an important part of justifying the validity and

applicability of a model.

If constant values are assigned to all parameters of an

SIR model, then it is said to be deterministic and the exact

same output will result every time the model is run

(assuming that the same model structure, equations, and

parameter values are used). If a probability distribution is

assigned to these parameters to better capture the uncer-

tainty of the estimate, then the model is said to be sto-

chastic, which means that the output will vary each time

the model is run. Stochastic models are usually run thou-

sands of times so that the probability distribution of outputs

can be examined.

A key step in testing a model is sensitivity analysis,

which determines how much each model component con-

tributes to the output of the whole model. This process is an

important contribution of modeling to the design of valid

field studies. Parameters that are highly sensitive strongly

influence the outcomes of the model, and, presumably,

real-life outcomes. Sensitive variables must be measured

very carefully. Other parameters may have almost no

impact on the outcome of a model. These variables may not

even need to be included in data collection, although it is

important to err on the side of caution when using models

to identify key variables, since the results of sensitivity

testing are dependent on the model structure and assump-

tions, the definition of parameters, and existing data. Still,

the identification of parameters that appear to be highly

sensitive can be critical to the development of valid data

collection procedures.

Once the framework for study design and sampling has

been developed, models can be used to explore the balance

between sample size and statistical power or to determine

whether the proposed study can be completed within

budget and time constraints. In some cases, models may

show that a field study is unlikely to produce meaningful

results. For example, it may not be practical to conduct a

study if a large population with special attributes is

required and known to be unavailable, or if the most

important variables are difficult or impossible to measure

accurately and reliably. In situations in which a model

shows that a field study is impractical, mathematical

models may be able to replace field studies by generating

output based on information that is already available.

Replacements for field studies may be essential when time

constraints or ethical concerns prevent a trial from being

conducted. For example, a model of foodborne disease

outbreaks based on past outbreaks can be used to estimate

the effects of changes in human and pathogen behavior on

population health rather than waiting to see what the out-

comes of a particular emergent threat are before updating

policy recommendations [7].

Analyzing data

Once a field study has been implemented and data have

been collected, the third stage of the research process is

data analysis. Whether or not data were collected with a

mathematical model in mind, a model can be created or

modified for use in interpretation of results and for causal

analysis. After assigning values to compartments and

parameters, a model can be run—the equations solved,

usually as a function of time—and the outcome variables

can be displayed visually on a computer monitor, usually in

the form of graphs.

A first step in analyzing data with mathematical models

is to use model representations to simplify complex data

sets into manageable relationships and pathways to

explore. For example, in an SIR model equations are used

to define the change in the number of people (or the pro-

portion of the total population) in each compartment during

a certain time period. In the model shown in Fig. 3, there is

only one arrow leaving the S box. The equation for the

change in this compartment over time is written as

dS/dt = -kS, which says that the change in S per one unit

of time is to lose individuals from the S box at a rate of k.

The equations for the other compartments are dI/dt =

?kS-qI and dR/dt = ?qI. Individuals who leave box S (-kS)

enter box I (?kS), and individuals who leave box I (-qI)

enter box R (?qI). More complex models (such as the one

in Fig. 4) may require more complex equations. For

example, if the infection rate is found to be related to the

proportion of infectious individuals in the population at a

given time, which is I/(S?I?R), it would be more accurate

to have the equation for the flow out of the S box to be

dS/dt = -kS(I/(S?I?R)).

It is also possible to define how different types of

individuals relate to one another using structured (or

preferential) mixing equations that describe how certain

individuals or populations interact with one another. For

example, these equations might specify that a child is more

likely to have contact with another child than with an adult

or that individuals who engage in high-risk behavior (such

as unprotected sexual intercourse) are more likely to

engage in risky behavior with other high-risk individuals
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than with low-risk individuals. An even more complex

model may require moving beyond compartments to indi-

vidual-based simulation in which each simulated individual

in the population has a personal history and a special set of

rules that define how that individual interacts with other

individuals and with the environment. Data can be used to

refine the model components and pathways and to fill in

population counts and rates of interaction. Conversely,

models can be used with existing data to fill in gaps in

knowledge.

Models also allow for fuller use of existing data and the

concurrent analysis of data from a variety of sources. For

example, models have been used to estimate the incidence

of hepatitis A virus infections based on seroprevalence data

from more than one hundred field studies from around the

world [8] and to analyze HIV transmission dynamics in

populations of injecting drug users by combining surveil-

lance information with testing of needles used in exchange

programs [9]. Other models have compiled information

about pathology, immunology, and epidemiology into one

model of the causes of influenza outbreaks [10]; combined

bacteriological, pharmacological, and treatment informa-

tion into an analysis of antibiotic resistance risks in hos-

pitals [11]; and incorporated longitudinal data on

household socioeconomic status and family violence into a

model of mental health [12]. As models in epidemiology

and other fields refer to and refine each other, data col-

lected by epidemiologists becomes even more valuable for

understanding population health and predicting changes in

public health status.

Applying findings to public health

A typical final step in the epidemiologic research process is

to identify the lessons learned from a study, which often

takes the form of suggesting possible public health inter-

ventions based on the results of a field study, proposing

appropriate policy measures to address public health con-

cerns, or recommending future areas of research. Models

can contribute to all three of these functions. Some of the

first models in epidemiology were developed in 1760 by

Bernoulli in order to promote the benefits of smallpox

vaccination [13], and applied models remain popular today

as tools for persuasion and enhanced decision-making.

Models can be useful to both scientists and policymak-

ers, and are helpful for demonstrating the value of public

health programs to stakeholders. For example, a model of

HPV vaccination in Finland that compared the effective-

ness of vaccinating different populations at different ages

determined that programs targeting females alone were

almost as effective as programs for both sexes [14], while

an evaluation of a possible HPV vaccination program for

12-year-old girls in the United States determined that the

proposed program would have somewhat higher cost than

existing childhood vaccination programs but would provide

a similarly high benefit [15, 16]. Other studies have used

surveillance data to predict the effects of policies or pro-

grams on the incidence and prevalence of other sexually

transmitted infections in the general population [17–19];

the SimSmoke simulation model uses assessments of the

impact of past tobacco control policies to predict the

impact of new policies on smoking prevalence in the future

[20]; the BOLD model feeds data collected under rigorous

standards at sites around the world into a model of the

burden of chronic obstructive pulmonary diseases [21];

DISMOD II, a program available through the World Health

Organization, checks the internal validity of burden of

disease estimates [22]; the Prevent model examines the

impact of risk factors on chronic disease [23]; and studies

exploring the best ways to allocate health resources have,

for example, examined the relative impacts of resources

used for preventing the onset of chronic diseases versus

preventing the complications of existing cases [24]. Models

have also been used to identify high-risk populations, and

to predict the impact of demographic shifts or behavioral

changes on disease incidence and prevalence.

Models using data collected during a study or inter-

vention can inspire further related interventions, trigger

investigation of outcomes that are not understood, lead to

changes in an intervention effort as it progresses, and

provide reassurance that intervention programs are on track

for success. For example, models were used to improve the

Onchocerciasis Control Program in West Africa mid-

stream. The effectiveness of the expensive, large-scale

program to reduce the black fly vector that transmitted the

parasite that causes onchocerciasis (also known as river

blindness) was questioned when nearly a decade into the

program there was little change in the prevalence of

onchocerciasis in the treatment area. A model of the

decreasing intensity of infections based on data collected

during the intervention showed that continuing the program

could lead to the elimination of onchocerciasis from the

study area in just five additional years. The model proved

to be correct [25], and the OnchoSim program is now being

used for surveillance and planning in other regions of

Africa [26].

Other studies have compared the projected health

impacts of various types of interventions based on col-

lected data. For example, a dynamic population model used

to explore the relative outcomes of various types of

smoking cessation interventions found that minimal coun-

seling by a physician was the most cost-effective way to

reduce tobacco use, but it was responsible for only a small

portion of those who quit smoking; intensive counseling

plus use of a pharmaceutical smoking cessation aid was

Mathematical modeling and the epidemiological research process 17
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more expensive, but was significantly more effective [27].

These applications of study results to public health show

that the research process rarely ends at this stage, but

instead flows naturally back to the identification of new

questions to explore.

Conclusion

In the cycle of epidemiological research, mathematical

models can provide many benefits, such as simplifying and

presenting complex information, evaluating the signifi-

cance of variables, performing additional analysis on data,

and forecasting outcomes for a project or population

(Fig. 2). The publication of epidemiological models can be

of great benefit to the epidemiological community when

researchers describe their frameworks, assumptions, anal-

yses, and interpretations in clear and quantifiable terms.

At present, one of the main challenges to the expanded

use of mathematical models in epidemiology is the limited

pool of epidemiologists with the advanced mathematical

training required to design and conduct high-level analysis.

This impediment can be substantially alleviated by

expanding collaborative research with experts in related

disciplines, such as computer science, mathematics, bio-

informatics, geography, and engineering. Epidemiology

will benefit from more and broader collaborations, and

interdisciplinary work will contribute to the development

and application of both new tools and novel uses for

existing analytic techniques. A related concern is the need

for epidemiological modelers to clearly explain both the

outcomes and the limitations of their work to the public, to

politicians, and to public health professionals. As the

number of epidemiologists comfortable with the use and

interpretation of models grows, the number of researchers

able to effectively communicate this information will also

increase. This will enable researchers to make even fuller

use of mathematical models during all stages of the epi-

demiologic research process.
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