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Mathematics for Understanding Disease
RR Bies1, MR Gastonguay2 and SL Schwartz3

“Being able to predict things or to describe them, however 
accurately, is not at all the same thing as understanding them.” 

David Deutsch1

The application of mathematical models to reflect the 
organization and activity of biological systems can be viewed 
as a continuum of purpose. The far left of the continuum is 
solely the prediction of biological parameter values, wherein 
an understanding of the underlying biological processes is 
irrelevant to the purpose. At the far right of the continuum 
are mathematical models, the purposes of which are a precise 
understanding of those biological processes. No models in 
present use fall at either end of the continuum. Without 
question, however, the emphasis in regards to purpose 
has been on prediction, e.g., clinical trial simulation and 
empirical disease progression modeling. Clearly the model 
that ultimately incorporates a universal understanding 
of biological organization will also precisely predict 
biological events, giving the continuum the logical form 
of a tautology. Currently that goal lies at an immeasurable 
distance. Nonetheless, the motive here is to urge movement 
in the direction of that goal. The distance traveled toward 
understanding naturally depends upon the nature of the 
scientific question posed with respect to comprehending 
and/or predicting a particular disease process. A move 
toward mathematical models implies a move away from 
static empirical modeling and toward models that focus on 
systems biology, wherein modeling entails the systematic 
study of the complex pattern of organization inherent in 
biological systems.

There have been significant advances in the application of 
mathematics to biological systems, incorporating the nature 
of the disease and responses to therapeutic intervention.2–6 
There are three major approaches in applying mathematical 
modeling to biological systems (Figure 1). The information 
from each of these approaches arise from essentially the same 
system, but the modeling concepts per se need not be, and 
usually are not, interchangeable. The approaches contribute 

different levels of utility and understanding. Looking at Figure 1 
from the top down: Empirical modeling represents the trac-
ing or measurement of disease progression, wherein observed 
responses represent an integral of the elements that comprise 
them. That is, this form of modeling is a composite of the 
underlying system along with indiscernible organizational 
elements. Transforms of information such as Poincare plots, 
delay plots, Fourier, fractal, and wavelet approaches repre-
sent an application of techniques to aid in signal extraction 
related primarily to observed variability and/or periodicity 
in the system (see definitions in the Supplementary Data S1 
online). These transforms can reveal key interconnections 
among system elements. Transformation, although not explic-
itly reflecting the true mechanistic underpinnings, makes the 
system tenable because some architecture is maintained. These 
can also allow for both the “normal” and “abnormal” states of 
the biological system to be probed. The third approach, fun-
damental biologic whole-system modeling, reveals the con-
nected nature of the system and observes it in sufficient detail 
and under such conditions as to truly capture the nature of 
the changes within the system that are occurring over time. 
This level of observation is one that can potentially recreate 
all of the other observed levels, although it is also the most 
difficult to achieve.

Illustrated in Figure 1 from the bottom up is the translational 
utility of the model categories to mathematical representation 
of the disease. The representation of biological systems involved 
in the disease state, incorporating the role of feedback regula-
tory loops in maintaining the homeodynamic (as opposed to 
homeostatic)4 system, provides significant insights into the dis-
ease. These models are intended to simulate alterations in one 
or more parameters of the disease model over the duration of 
observation. In addition, functions of multiple parameters can 
provide significant insight into the maintenance of the homeody-
namics of the system. This is discussed in more detail later. Basic 
definitions are available in the Supplementary Data S1 online. 
The transform area represents a family of approaches that apply 
mathematical transforms to obtain an output without necessar-
ily incorporating the explicit interconnections of the underlying 
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biology. This is particularly useful in oscillating, periodic, or ape-
riodic systems, wherein the most detailed level cannot be ade-
quately defined. Often, the output of such a system is not readily 
tenable with respect to the impact of a particular intervention (i.e., 
introduction of a pharmacological agent) without evaluating these 
perturbations in the context of interconnected changes in signal 
frequency or location that reflect simultaneous and interdepend-
ent changes. These approaches do not, however, explicitly reflect 
the true underlying mechanistic interconnections. Nonetheless, 
they can be very helpful in understanding system stability and 
perturbations when the most detailed level of information is not 
available. By providing a unified framework, they can be useful in 
providing an understanding of both the “normal” and “abnormal” 
modes of system operation.2,7

Empirical modeling5,6 represents a majority of the work 
over the past 15–20 years, relating the shape or trajectory of a 
disease over time to treatment interventions. These trajecto-
ries have been widely used in clinical trial simulation,5,6,8–11 
utilizing a directly measured disease marker and comparing 
responses to active treatment, placebo, and no treatment. In 
addition, it has been posited as a rigorous method for detect-
ing drug effect.5,6,8,11 At this level of observation, one has 
the ability to apply nonlinear mixed-effects approaches to 
preserve data structure and to provide a “baseline” of typi-
cal disease state progression. Superimposed on this is the 
change elicited by a particular intervention. This allows the 
analyst to discern how various effects change the trajectory 
of the disease. However, as emphasized earlier, the underly-
ing mechanistic changes are frequently derived from positive 
and negative feedback loops, leading to nonlinearities that are 
“hidden” from view.

All approaches require well-designed experiments and meas-
urements in order to be adequately informed and therefore use-
ful. Specific experimental approaches9 can help to uncover the 
underlying nonlinearities. These methods consider important 
variables such as the timing and pattern of pharmacological 
stress input. The time the biological system takes to return to a 
baseline homeodynamic state after an intervention, i.e., how long 
it takes the system to return to the original state, is an important 
element that should be determined before moving forward with 
further experimental designs, although this is not always prac-
tically achievable. That is, if embedded nonlinearities are not 
uncovered with this type of approach, then further exploration is 
not necessary unless additional studies are designed for evaluat-
ing changes over time with different pathophysiological states. 
In addition, closely examined, intact-system experiments, such 
as those conducted by Bergman, Cobelli, and Guyton,12,13,14 are 
critically important to the understanding of the dynamics of a 
system that has interconnected feedback regulatory loops. Such 
an examination avoids choosing an isolated (static) target when, 
in fact, temporally inconstant counter-regulatory changes affect  
the emergence of either adverse drug reactions or significantly 
attenuated and unexpected responses.

Specific examples from each of these categories of observation 
or experimentation, as applied to disease state progression, are 
presented here.
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Figure 1 Three major categories of mathematical applications to 
understanding disease. The bottom, fundamental portion, has the greatest 
detail and closest operating characteristics to the disease, thus is the 
category that produces the most predictive models of the system. This 
is the level that is the ideal goal for understanding the system. As one goes 
up in the figure, the level of detail is reduced and the direct extraction of 
the mechanistic underpinnings is less directly defined. All of the higher 
levels can be created from lower levels, but the more detailed levels 
(i.e., lower levels) cannot be recreated with mathematical modeling at 
the higher levels. Thus, even though the same outputs or processes may 
be represented here, the mathematical modeling approaches at each of 
these levels is not fully interchangeable (i.e., mechanistic components 
interconnected vs. transforms revealing interconnections that may not be 
directly reflective of those changes).
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Figure 2 An illustration of the structure of the minimal model for glucose 
homeostasis of Bergman and Cobelli. There are two elements that 
simultaneously interact: insulin plasma concentrations I(t) and the glucose 
plasma concentrations G(t). The X(t) term represents a function of insulin 
action that affects both insulin plasma concentration and glucose plasma 
concentration. Without the key feedback interconnections between 
responses, the model loses the ability to make clinical inferences on disease 
and risk of disease. SG is the glucose response (p1), SI is the insulin sensitivity 
(the ratio p3/p2), p2 is the insulin action parameter, p4 is a link parameter from 
interstitial insulin to glucose regulation in plasma, and p5 is a scalar for insulin 
input into the plasma. Volumes are typically normalized to allow comparisons 
across individuals. Insulin sensitivity in regulating insulin response is also 
modulated by the difference between the current insulin concentration 
and the basal insulin concentration. These components are composites 
of the individual parameter values in the schematic as they represent the 
uniquely identifiable elements. The model is shown using ordinary differential 
equations as follows:
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Category 1: Fundamental Whole-SyStem  
BiologiC modeling
A classic example is the minimal model for glucose and insu-
lin regulation developed by Bergman with extensions by 
Cobelli.12,14 This is an example of capturing system-level behav-
ior using the minimal model evaluation, although it included 
little pharmacological examination. The major strength of this 
approach is the preservation of the positive feedback loop to 
maintain a particular homeodynamic set point (Figure 2) 
between glucose and insulin. The model developed in this con-
text provides the basis of examining true “changes” in disease. 
More specifically, the risk associated with change in disease sta-
tus can be assessed by examining individual parameters of the 
disease model. The actual insight into the disease status is then 
arrived at using a mathematical combination of these param-
eters, reflecting the ability of the body to respond to a particular 
stimulus. Given that the goal of this system is to maintain a 
constant level of function through a combination of insulin 
release and insulin sensitivity, the product of insulin release and 
insulin sensitivity provides significant insights into the progres-
sion of the disease (Figure 3). These two elements are estimated 
parameters in the model that is informed using the appropriate 
system level (i.e., interconnections intact) experimental para-
digm. In a healthy individual, this product should be constant, 
allowing the investigator to monitor changes with respect to the 
relative contributions of insulin release and sensitivity, based 
on the model system. If this product changes, it represents a 
shift to a diabetic state. Therefore, the model provides not only 
parameters but also specific interpretation that indicates risk 
and disease progression while preserving the inherent feed-
back in the system. The elements of this system are not floating 

independent of one another but are coupled and constrained 
under the conditions that pertain to a healthy individual. This 
constraint represents maintaining a particular level of physi-
ological functioning. The presence of disease or disease onset 
perturbs this level of physiological functioning. This approach 
has led to significant improvements in the understanding of the 
pathogenesis of diabetes (type 2) and is currently widely used.12 
In addition, it informs treatment strategy.

Others have attempted to extend this work by incorporat-
ing dynamic modeling of the glucose and insulin elements 
simultaneously.15 However, it is unclear whether maintaining a 
physiological set point is present as a constraint or, at least in the 
context of categorizing severity of disease, as potential intercon-
nections affecting glucose and insulin disposition.

Another version of this approach used physiological feed-
back loops involved in regulating temperature, in relation to 
the pharmacological perturbation of the 5-HT1A receptor.16,17 
In this case, a small perturbation (i.e., low dose) of the system 
resulted in a prominent temperature oscillation, whereas a large 
perturbation (high dose) resulted in no apparent tempera-
ture oscillation, possibly because of an overdampening effect 
on the system. This is a hallmark of many feedback systems, 
because it is a hallmark of dynamical systems.2 Full-system 
approaches have been applied to the cellular biology of cancer, 
human immunodeficiency virus, and calcium homeostasis as 
well, thereby throwing light on the complex interconnection 
of signals that may increase, decrease, or remain unchanged 
over the course of the observation after a perturbation to 
the system.18–20

Category 2: the appliCation oF tranSFormS 
WaveletS, Fourier, poinCare, and FraCtalS
The examination of heart rate variability (HRV) and its rela-
tionship with cardiac events is a critically important area of 
study. It was discovered that, if an individual has a significantly 
reduced HRV, as measured by the electrocardiogram R–R 
interval, the risk for a serious cardiac event increases dramati-
cally.21 One can therefore presume that the Cardiac Arrhythmia 
Suppression Trial study’s goal of reducing ventricular ectopic 
depolarizations, and thereby reducing irregularities in cardiac 
function, may actually have increased patients’ risk for adverse 
cardiovascular events. This suggests that the nature of the oscil-
latory signals is important for maintaining regulatory feedback 
loops, although the HRV in and of itself does not explicitly 
indicate the mechanistic underpinnings that are creating this 
effect. That is, some of what is perceived as “noise” in the sys-
tem is critically important to the response of the system. The 
capture of this variability with transforms allows its nature to 
be understood, conveyed more readily, and studied in the con-
text of its effect on cardiac function that otherwise may have 
remained hidden.

An example of the utility of wavelets in understanding 
HRV22–24 is seen in a study examining the linkage between 
HRV and the administration of atropine. Traditional analysis 
of these raw data was unable to identify a specific relation-
ship between HRV and atropine. Wavelet analysis, however, 
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Figure 3 This graph shows the insulin sensitivity on the x-axis and the insulin 
response on the y-axis. The insulin sensitivity and response is estimated from 
the fitted parameters to the minimal model shown in Figure 2. A healthy 
individual will have a constant product of these two parameters. Graphically, 
this is seen as a hyperbolic curve. Insight into disease is gleaned from the 
position on the hyperbolic curve. An individual may look clinically “normal” 
and yet have either insulin sensitivity or insulin response predominant in 
driving this normal appearing response. A shift along the curve may represent 
an increased risk for developing disease (e.g., from position A to position B). 
A shift off of the curve (i.e., from the upper curve to position C) represents a 
transition to disease. Interpretation of individual specific changes in these 
relationships is only possible using a mechanistically driven model.
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the underlying system, as evidenced by other simultaneous 
system-based modeling applications;31,32 and (iii) a more reli-
able means of extrapolating beyond the observed data, a com-
mon requirement for supporting decision making during drug 
development.

Supplementary material is linked to the online version of the paper at 
http://www.nature.com/cpt
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demonstrated a time series interbeat-interval event which was 
a function of the cumulative power of the system and the atro-
pine concentration.

Category 3: empiriCal diSeaSe progreSSion modeling
There are multiple examples of empirical disease progression 
modeling, one of the first being the description of changes in 
Alzheimer’s disease over time and, subsequently, the effect of 
the drug tacrine on changes in the disease.25–27 This approach 
identified that tacrine exerts a symptomatic effect on the dis-
ease. That is, as soon as the drug is discontinued, the patient 
returns to a level of functioning as though he/she had never 
taken the medication. It follows, therefore, that tacrine only 
extends the duration of a particular stage of the disease and 
does not impact the rate of change in the disease. Other dis-
eases that have been modeled using this approach include dia-
betes,11,28 schizophrenia,10 and Parkinson’s disease. The model 
of Parkinson’s disease is an excellent example of the ability of 
this approach to distinguish a symptomatic effect from a pro-
tective or disease-modifying effect.29,30 Specifically, the effect 
of levodopa on Parkinson’s disease progression was evalu-
ated against the background of concerns that this treatment 
may be actually accelerating the progression of the disease. 
Clinical trial simulations using DATATOP (model develop-
ment dataset) and ELLDOPA (model external validation data-
set), however, demonstrated a beneficial, disease-slowing effect 
of levodopa.

Several investigators have also added more mechanistic 
underpinnings at this level, producing semimechanistic phar-
macokinetic/pharmacodynamic descriptions in areas of study 
such as the electroencephalogram effects of opioids31 and 
HMG-coenzyme A response over time.32 A major concern is 
that models selected in a statistically driven manner (models 
selected using statistical criteria) and their level of utility must 
be appropriate to the question posed.

ConCluSionS
Predictive power can be achieved by the reductionist and induc-
tive processes of empirical modeling. However, as stated in the 
introductory quotation by Deutsch, no amount of predictive 
power alone can imply understanding. Certainly, the application 
of mathematical modeling can provide significant insights into 
the nature of disease and the response of the disease to pharma-
cological intervention. But such insights require the implemen-
tation of systems biology models. The level of detail required is 
dictated by the nature of the question posed regarding the disease 
and, by extension, the level of knowledge required in order to 
sufficiently address the question. The level of utility of the model 
will naturally depend upon the extent to which this requirement 
is met.

Mathematical modeling efforts aimed at an integrated, mech-
anistic, and/or quantitative description of the current under-
standing of dynamic biological systems may hold advantages 
over more empirical models by allowing for: (i) the simultane-
ous modeling of multiple therapeutic interventions and mul-
tiple disease indications;12,13,19,20,33 (ii) greater insight into 
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